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Abstract

A revised, consistent, pedagogical approach to studying the motion of heavy and light probe quarks in
a thermal plasma using the AdS/CFT correspondence is explored. Two cases are considered: external
heavy or light quarks undergoing Brownian motion in the plasma, and an external heavy quark moving
through the field theory plasma with a constant velocity.

In the bulk theory, the dual description of these probe quarks are realised as test strings in an asymp-
totically anti-de Sitter-Schwarzschild background. An on-mass-shell, external heavy quark is modelled
as an open string attached at the AdS boundary and hanging towards the horizon. In juxtaposition, an
off-mass-shell, external light quark is modelled as an open string, initially stretched between the AdS
boundary and just above the horizon, whose AdS boundary endpoint is released to fall at the local speed
of light. In both cases, the Schwarzschild black hole excites the modes on the string – resulting in the
string’s boundary (stationary or falling) endpoint enduring irregular motion. This corresponds respec-
tively to the heavy or light probe quark in the gauge theory undergoing Brownian motion. For both
cases, the mean-squared transverse displacement of the string’s boundary endpoint, s2(t; d) (equivalent
to the mean-squared displacement travelled by the external quark in the thermal plasma) is computed.
In the early time limit, the behaviour is found to be ballistic s2(t; d) ∼ t2, while the late time dynamics
are diffusive s2(t; d) = 2D(d) t. The diffusion coefficient D(d) is extricated for both the heavy and light
quark’s test strings; first in AdS3-Schwarzschild and then generalised to AdSd-Schwarzschild.

Further, an infinitely massive probe quark moving through the thermal plasma with a constant velocity
is considered. An open string trailing out behind the quark (arcing down into AdS-Schwarzschild) is
used to model the situation. From this, the drag force on the test string is calculated in the bulk and
rewritten – via the AdS/CFT correspondence – in terms of relevant quantities in the gauge theory.
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Note on Notation

Throughout this dissertation, lower-case Latin alphabet indices (e.g. a, b, c, d) index over the string’s world-
sheet parameter space, typically over the standard parameter variables (τ, σ) or the light-cone parameter
variables (σ+, σ−). Lower-case Greek alphabet indices (e.g. µ, ν, λ, γ) are used to index over the spacetime,
typically in anti-de Sitter spacetime over the temporal t, radial r, and transverse directions XI . The sub-
space of anti-de Sitter spacetime spanned by the transverse directions are always indexed by I, J . In some
instances the Greek alphabet indices are enumerated – for example, the isothermal coordinate Xµ, where
µ ∈ {0, 1} indexes over the first and second directions in a two-dimensional subspace of spacetime.

Note on Coloured Links

In this dissertation, citations are declared in dark green; while links to page numbers, figures, tables, sections
and equations are designed to be less noticeable and are given in dark gray.
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1 Introduction
It is both experimentally pertinent and theoretically interesting to examine the movement of a quark un-
dergoing Brownian motion in a hot plasma. The main aim of this work is to present an instructional or
pedagogical approach to using the AdS/CFT correspondence to explore the dynamical behaviour of probe
heavy and light quarks immersed in a thermal plasma.

The plasma in question, the quark-gluon plasma (QGP), is created by colliding lead and gold nuclei at high
energies in the Large Hadron Collider (LHC) at CERN; and the Relativistic Heavy Ion Collider (RHIC)
in Brookhaven National Laboratory (BNL). Before the first results from RHIC in 2000 it was expected
that at high energy densities QCD asymptotic freedom would result in a weakly-coupled system exhibiting
gas-like behaviour. However, the experimental results [1] indicated that the produced QGP (a deconfined
state of mater consisting of quarks and gluons) does not expand isotropically and behaves, in-fact, as a
strongly-coupled medium [2, 3]. The thermal plasma expands anisotropically in its azimuthal direction.
The momentum anisotropy of the measured particles is known as elliptic flow1. This discovery did not
definitively settle the question as to whether the QGP is weakly- or strongly-coupled. There is evidence to
support both. Weak coupling techniques from perturbative quantum chromodynamics (pQCD) have been
successful in predicting the distributions of high transverse momentum observables [6–8]; while low trans-
verse momentum observables described by near-ideal relativistic hydrodynamics [9–12] can be understood
within a strong coupling paradigm [13, 14]. Further, jet suppression [15, 16] and heavy quark energy loss
studies [17] support the theory of a strongly-coupled thermal plasma.

At strong coupling, the usual perturbation techniques are no longer applicable and many quantities in
gauge theories become difficult to compute. In 1974, ’t Hooft [18] postulated that the generalisation of
the quantum chromodynamic SU(3) gauge group (where Nc = 3 is the number of quark colours in the
theory) would be an SU(Nc) gauge group, where the large Nc limit is taken (Nc → ∞ while λ := gYMNc
is kept fixed and large). The Yang-Mills coupling is denoted by gYM , and the quantity λ is known as the
’t Hooft coupling. The large Nc limit provides an approximation to compute the gauge theory at strong
coupling2. Inspired by ’t Hooft’s idea, a promising approach in studying the strong coupling limit of non-
abelian quantum field theories (such as QCD) was formulated in 1999 by Juan Maldacena [21]. Known as
the anti–de Sitter/Conformal Field Theory (AdS/CFT) correspondence, it is a study of the duality between
bulk gravitational physics of a given d-dimensional spacetime and a (d− 1)-dimensional gauge theory on its
boundary. Considering the phenomenologically relevant case, at finite temperature the equivalence exists
between type IIB string theory on ten-dimensional spacetime approximated by Einstein’s general relativ-
ity on a five-dimensional non-compact anti-de Sitter spacetime and a five-dimensional sphere (AdS5 × S5)
(referred to as either the gravity or bulk theory); and N = 4 supersymmetric Yang-Mills theory (SYM) on
four-dimensional Minkowski spacetime [20] (referred to as either the gauge or boundary theory). Quantities
which are difficult to compute in a strongly-coupled gauge theory can be calculated in a weakly-coupled
gravity theory, and translated back via the AdS/CFT dictionary (see table (1), page 6)3. After its initial
discovery, generalisations of the AdS/CFT correspondence followed and the field is now grouped under
gauge/string dualities. In the succeeding two decades since the initial publications of [21, 24–27] there has
been much interest (and success) in using the gauge/string duality to determine properties of the given
gauge theory’s plasma state.

Propelled by experiments at RHIC and the LHC, theoretical developments in this regard have been inspired
by an early calculation [28] which found the ratio of shear viscosity to volume entropy density (η/s) in the
strong coupling regime using the AdS/CFT correspondence. This ratio is experimentally measurable, and
data provided by RHIC supported the theoretical result [29, 30]. Building on this, Kovtun et. al. [31, 32]

1For two comprehensive reviews on discoveries relating to the hydrodynamic description of relativistic heavy-ion collisions
(specifically collective flow and viscosity), see [4, 5].

2In the large Nc limit, a topological factor Nζ
c (where ζ is the Euler characteristic) is assigned to each Feynman graph. Summing

over these graphs can be thought of as summing over the worldsheets of the supposed ‘QCD string’ (the QCD string dual is
unknown and is approximated by the N = 4 SYM string dual) to yield the partition function for the large Nc theory [19, 20].

3There is a hitherto unaddressed assumption at play here – the theory of quantum chromodynamics is not exactly equivalent to
N = 4 supersymmetric Yang-Mills theory. The theories are however analogous: while the matter fields and quantum dynamics
of the theories differ, their gauge fields and tree-level interactions are common [22]. Qualitatively the plasmas of QCD and
N = 4 SYM share many properties, such as Debye screening and finite spatial correlation lengths [23]. Hence, for studies in
the high temperature regime it is assumed that the plasma of N = 4 supersymmetric Yang-Mills is similar to the quark-gluon
plasma of QCD.
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discovered the shear viscosity/entropy density ratio is universal for a large class of these QFTs and, further,
that this ratio is a universal lower bound for the viscosity in general4. This discovery was essential in
understanding the elliptic flow that had been observed at RHIC, and sparked interest in the link between
string theory and relativistic heavy-ion phenomenology5. Exploring this link, two pertinent examples this
dissertation will focus on are (i) the dissipative and diffusive behaviour of a massive quark moving through
a field theory plasma explained by studying trailing strings in the AdS spacetime [22, 35–41]; and (ii) heavy
and light quarks undergoing Brownian motion studied by examining transverse fluctuations on open strings
in an AdS black hole background [42–52].

Motivated by these past studies, this dissertation seeks to better understand the fluctuating energy loss
of light and heavy quarks in a thermal medium. Specifically, heavy and light probe quarks in the gauge
theory are considered to undergo Brownian motion6, and the mean-squared transverse displacement of the
string’s boundary endpoint s2(t; d) (equivalent to the mean-squared displacement travelled by the external
quark which is initially at rest in the thermal plasma) is computed. Functioning as a pedagogical work
for these types of gauge/string calculations, this dissertation aims to present a consistent framework7 –
providing insights into published results and including proofs of some of the more vague statements in
the literature. In terms of original advancement, previous generalisations of s2(t; 3) in AdS3-Schwarzschild
to AdSd-Schwarzschild for the light quark’s case are challenged and the method in which to generalise to
s2(t; d) correctly given for the first time. Notwithstanding this, the other main contribution of the disserta-
tion to this field is presenting a definitive, consolidated theoretical derivation – from which further research,
including analytical calculations with different test string configurations or numerical analysis confirming
previous analytic results, can be undertaken.

1.1 Dissertation Structure
This dissertation is organised in two parts. The first part provides some useful theoretical background
needed to understand the bulk calculations in Part II. The central results of this dissertation are given in
the second part.

In Part I:

First, the gauge/string duality is introduced in section (2). Particular attention is paid to the throat con-
struction of anti-de Sitter spacetime as a limit of D3-brane geometry, and the justification of the AdS/CFT
conjecture. In section (3) the basic theory of Brownian motion and the non-retarded and retarded Langevin
models are explored. The first and second fluctuation-dissipation theorems are derived. The mean-squared
displacement s2(t) is calculated and its behaviour in the early and late time limits are discussed. At early
times, the Brownian particle’s behaviour is proportional to time and the motion is expected to be ballistic
s(t) ∼ t; while, at late times, the Brownian particle’s motion is diffusive, s(t) ∼

√
t.

In Part II:

To begin Part II, section (4) focuses on calculating an external heavy quark’s diffusion coefficient in the bulk
AdS3-Schwarzschild spacetime. The dual description of the on-mass-shell heavy quark exhibiting Brown-
ian motion in the thermal plasma – an open string attached at the anti-de Sitter boundary8 and hanging
towards the horizon undergoing transverse fluctuations – is used to compute the mean-squared transverse
displacement of the string’s boundary endpoint s2(t; 3). The diffusion coefficient is extracted at late times.
Similarly, in section (5) an off-mass-shell light quark exhibiting Brownian motion in the thermal plasma is
modelled as an open string undergoing transverse fluctuations (initially stretched between the AdS bound-

4In addition, see Buchel et al.’s contributions [33, 34].
5A worthwhile review on the topic is given by Casalderrey-Solana et al. [14].
6Brownian motion [53] concerns the ceaseless, random motion of a given particle undergoing microscopic collisions with the
constituent particles of the fluid it is immersed in. The motion is responsible for the dissipative nature of a system and its
approach to thermal equilibrium. Any particle suspended in a finite temperature fluid undergoes this motion, and as such a
probe quark immersed in the QGP behaves the same way. The AdS/CFT correspondence can be used to study the behaviour
a probe quark exhibits while interacting with the strongly-coupled thermal plasma.

7A necessary pursuit considering how versatile the field is – publications on gauge/string dualities span all physics arXivs [20].
8The boundary of a D7-brane stretching from r =∞ to the string’s boundary endpoint [54].
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ary and just above the horizon) whose AdS boundary endpoint is released to fall at the local speed of light
in the presence of a space filling D7-brane [54]. Initially this section focuses on calculating an external
light quark’s diffusion coefficient in the bulk AdS3-Schwarzschild spacetime. Then, importantly, the results
are generalised to AdSd-Schwarzschild by expanding and truncating the near-horizon metric. Further, in
section (6), an infinitely massive probe quark moving through the thermal plasma with a constant velocity
is considered. An open string trailing out behind the quark (arcing down into AdS-Schwarzschild) is used
to model the situation. From this, the drag force on the test string is calculated in the bulk and rewritten
– via the AdS/CFT correspondence – in terms of relevant quantities in the gauge theory9. The Langevin
equation is then used to extricate the friction coefficient, and (by means of the Einstein-Sutherland relation)
the diffusion coefficient for a heavy quark in AdSd-Schwarzschild. Section (7) concludes the dissertation and
proposes avenues for future research.

There are a number of appendices to this dissertation. Appendix (A.1) derives the string equations of
motion by calculating the functional derivative of the Polyakov action with respect to the string worldsheet
coordinates and setting this variation to zero. In an analogous fashion, the string equations of motion for
the transverse fluctuations are found in appendix (A.4) by varying the Nambu-Goto action. The Virasoro
constraints and string equations of motion in isothermal coordinates are given in appendix (A.2); while a
derivation of the energy of a test string in an AdS-Schwarzschild background can be found in appendix (A.3).
Appendix (A.5) aims to fix the normalization constant Aω, thereby completely determining the general
solution for the transverse equations of motion. As the penultimate, appendix (A.6) calculates the leading
order contributions of the tortoise coordinate in the near-horizon region. Appendix (A.7) provides details
for accessing the GitHub repository where the latest annotated Mathematica code notebooks supporting
the analytical analysis of open string evolution presented here, can be found. The author believes it is
important to make the Mathematica notebooks available for reference purposes and in the spirit of open
collaboration.

9Historically, the drag force calculation was the first application of AdS/CFT to understand the behaviour of a probe heavy
quark in the quark-gluon plasma (see [22, 35]).
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Part I
Theory

2 The Gauge/String Duality
As recognised by ’t Hooft [18], understanding gauge theories with an SU(Nc) gauge group in the large Nc
limit perhaps offers the best course to illuminating the strong coupling behaviour of QCD. In the late 1900’s
it was suspected that string theory could describe the large Nc limit [55]. Maldacena [21] first made the
suggestion that a (d−1)-dimensional, conformally invariant field theory in the limit of large Nc corresponds
to string theory and supergravity on anti-de Sitter spacetime in d dimensions times by a d-dimensional
spherical compact manifold (AdS×S). This idea, based on the holographic principle10 and formally known
as the AdS/CFT correspondence, was developed in the months that followed by [24–27], to name a few. The
AdS/CFT correspondence is an example of gauge/string dualities which have subsequently been developed
into a powerful tool in understanding strongly-coupled systems11.

2.1 Anti-de Sitter Spacetime as a limit of D3-brane Geometry
The solution of low energy, type IIB string theory containing D3-branes prompted the formulation of the
gauge/string dualities. Solving the supergravity equations of motion yields the spacetime metric sourced by
Nc Dp-branes [59–61]. Specifically, the spacetime for the extremal D3-brane12 is

ds2 = H−1/2
(
−dt2 + d~x2

)
+H1/2

(
dr2 + r2dΩ2

5

)
, (2.1)

where the D3-brane is extended along the spatial coordinates ~x = (x1, x2, x3); H(r) = 1 + l4/r4 is known
as the warping factor13; and the second term metric describes the y−directions transverse to the D3-brane
written in spherical coordinates (where r2 = y2

1 + y2
2 + ... + y2

6 is the radial coordinate). The parameter l
is interpreted as the characteristic length scale of the range of the Nc D3-branes’ gravitational effects [14].
In the limit r � l, H ' 1 and the metric Eq.(2.1) reduces to Minkowski spacetime14. In the limit r � l,
H ' l4/r4 (which corresponds to a series expansion around r/l = 0 to leading order). Hence, in this limit
the metric Eq.(2.1) becomes

ds2 = ds2
AdS5

+ l2dΩ2
5 , where ds2

AdS5
=
r2

l2
(
−dt2 + d~x2

)
+
l2

r2
dr2 . (2.2)

Now l is identified as the radius of curvature of AdSd and Sd (see table (1), page 6); ds2
AdS5

is the metric
of five-dimensional anti-de Sitter spacetime15,16; and dΩ2

5 is the metric on S5 with unit radius. Therefore,
the spacetime sourced from a stack of D3-branes corresponds to ten-dimensional Minkowski spacetime far
away from the branes (see blue patch, figure (1)), while a throat geometry of the form AdS5 × S5 becomes
apparent close to the branes (see red patch, figure (1)).

Generalising to non-zero finite temperature T systems by exciting the degrees of freedom on the D3-brane,
adapts the anti-de Sitter spacetime part of the metric. Specifically, Eq.(2.2) becomes

ds2 = ds2
AdS5-Sch + l2dΩ2

5 , where ds2
AdS5-Sch =

r2

l2
(
−hdt2 + d~x2

)
+

l2

r2 h
dr2 , (2.3)

10Holographic as proposed by ’t Hooft, Susskind and Thorn in [56–58] respectively. In this sense, a holographic theory encodes
a theory in d dimensions by a theory in (d− 1) dimensions.

11A duality between two theories describes a situation where one theory is in the strong coupling limit, while the other theory is
in the weak coupling limit [20]. In order to study a strongly-coupled gauge theory, the equivalent weakly-coupled gravitational
string theory (i.e. a theory where the curvature of the spacetime is small) can instead be used.

12Only the ground state of the Nc D3-branes is being considered.
13The definition of the warping factor is independent of the dimensions of the theory.
14A small correction proportional to l4/r4 is present.
15The defining characteristic of AdS is a spacetime described by a constant negative curvature.
16The five-dimensional anti-de Sitter spacetime metric Eq.(2.2) represents a Poincaré chart of AdS5 spacetime. There is an
alternative formulation of anti-de Sitter spacetime in terms of global coordinates which provides a global coordinate chart (see,
for example, [62]).
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where h(r) = 1− r4
H/r

4 is known as the blackening factor. The first term of the metric in Eq.(2.3) describes
an AdS5 spacetime with a Schwarzschild black hole horizon at r = rH

17,18.

Figure 1: The spacetime around Nc D3-branes in type IIB theory, where l is the radius of curvature of AdSd and
Sd (adapted from [14, 63]). See page 4 for details.

A stack of Nc D3-branes can be described by (i) closed strings propagating in a curved spacetime geometry,
which – in the low energy limit – becomes closed IIB string theory in AdS5 × S5 (as discussed above); but
also (ii) open strings attached to a hyper-plane in flat spacetime, where the low-energy limit is given by
N = 4, SU(Nc) supersymmetric Yang-Mills theory [14, 63]. The hypothesis that the two descriptions are
equivalent was the first example of the AdS/CFT conjecture.

2.2 The AdS/CFT Conjecture
The best example of a gauge/string duality remains the equivalence between type IIB string theory in an
AdS5×S5 background to N = 4, SU(Nc) SYM theory on the four-dimensional Minkowski spacetime bound-
ary of AdS5. As has been seen in subsection (2.1), if the above duality is considered at finite temperature,
the addition of a black hole in the anti-de Sitter spacetime is necessary. The spacetime is then referred to
as the anti-de Sitter-Schwarzschild spacetime (or AdS-Schwarzschild).

The AdS/CFT correspondence claims that the partition functions of the gauge and gravitational theories
are equivalent, i.e. Zgauge = ZAdS [20]. In doing so the conjecture specifies a dictionary between two phys-
ical theories which appear to be very different (these relations are summarised in the reference table (1)).
In practice, the strong/weak coupling nature of the duality means that it is difficult to explicitly test the
validity of the conjecture19. There are, however, several contiguous tests – coupling-independent properties
of these theories that can be compared to investigate the duality. Specifically for AdS5 × S5/N = 4 su-
persymmetric Yang-Mills, tests include (i) comparing the global symmetries of the theories; (ii) matching
the coupling-independent correlation functions (these are normally protected from quantum corrections and
related to anomalies); (iii) comparing the spectrum of chiral operators; and (iv) examining the qualitative
behaviour of the theory deformed by chiral operators20 [27].

17The Schwarzschild black hole is the solution to the Einstein equation with no matter fields or cosmological constant.
18The radial position of the black-brane horizon rH is proportional to the temperature T (see table (1), page 6).
19With contemporary knowledge, pertubative computations in λ can mostly only be achieved in the field theory, while in the
string theory only pertubative calculations in 1/λ are possible. Therefore, comparing the correlation functions of these theories
is in principle not realisable [27].

20Qualitative tests include the existence of confinement in finite temperature gauge theories [64], and examining how the theory
behaves on its moduli space [65–67].
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AdSd (d− 1)-dimensional Gauge Theory Description

l
√
α′ λ1/4 Radius of curvature of AdSd and Sd

`s
√
α′ ≡ λ−1/4l Fundamental string length scale

T0 1/2π α′ String tension

(l/`s)
4 λ ’t Hooft coupling21

rH 4π l2 T/(d− 1) Radial position of the black hole horizon

(d− 1) rH/4π l
2 T ≡ 1/β Temperature of the gauge theory22

rc ≡ (rs + `0) 2π α′(Mrest + ∆m) Minimal radius of D7-brane23

T0 rH ∆m(T ) Thermal rest mass shift

T0 (rc − rH) Mrest(T ) Static thermal mass of external particle24

Table 1: The AdS/CFT dictionary - translating between quantities in the bulk and boundary theories (adapted
from Herzog et al. [35])

The main advantage of the AdS/CFT correspondence is that otherwise intractable problems are able to be
solved by their mapping onto the equivalent dual. Applications of the correspondence include gluon scat-
tering amplitudes calculations in strongly-coupled N = 4 supersymmetric Yang-Mills [69]; and the study of
holographic superconductivity and critical phenomena [70–72]25.

20The ’t Hooft coupling [18] is specifically defined in the phenomenologically relevant AdS5/N = 4 SYM case. In this case: λ ≡
g2
YMNc, where Nc is the number of colours and the Yang-Mills coupling is related to the string coupling by: gYM = 2

√
π gs.

However, this dissertation follows [42] in using the same terminology to refer to (l/`s)4 for general d dimensions.
21This is equivalent to the Hawking temperature of the black hole.
22A UV cut-off surface imposed near the boundary in order to consider external particles of finite mass in the gauge theory.
23In the AdS5/N = 4 SYM case, this is the free energy of a quark at rest in N = 4 SYM plasma. In the limit of zero temperature
it is equal to the QCD Lagrangian quark mass, mq [68].

25See [20] for a extensive review on systems with phase transitions in AdS/CFT, and [73] for an introduction to holographic
methods for condensed matter physics.
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3 Brownian Motion: the Dynamics of Langevin’s Model
Discovered by Robert Brown in 1827 [53] the ceaseless and irregular motion which small pollen particles un-
dergo when suspended in water, became known as Brownian motion. Brown postulated that this movement
had a physical rather than biological origin. In 1905 Albert Einstein [74]26 combined statistical mechanics
and the diffusion equation, to arrive at a theoretical explanation of the phenomenon. His famous formula
for the particle’s mean-squared displacement, 〈s2(t)〉, provided an observable for experimental physicists to
measure. Independently, Marian Smoluchowski [75]27 derived a similar result based on combinatorics and
kinetic theory’s mean-free-path approximation [76].

In a mathematical context, Louis Bachelier wrote his 1900 doctoral thesis on modelling prices on the Paris
stock exchange as the limit of a random walk [77]28. Neither Einstein nor Bachelier rigorously classified
Brownian motion as a stochastic process. This was taken up by the American mathematician, Norbert
Wiener, who ultimately proved the existence of Brownian motion by defining it as a stochastic process in
1923 [78]. Wiener’s output includes a series of papers starting in 1918 giving the mathematical definition and
properties of the physical process of Brownian motion abstracted as a stochastic process. Hence, Wiener
processes (essentially the same concept as Brownian motion but emphasising the mathematical aspects)
developed separately to the school of thought emphasising the physical aspects.

Turning back towards the explanations of physicists, Einstein and Smoluchowski failed to take into account
the inertia of the particle undergoing Brownian motion. Applying Newtonian dynamics to a Brownian
particle, Paul Langevin [79]29 arrived at a useful phenomenological model in 1908.

3.1 The Non-retarded Langevin Model
Consider the following: a non-relativistic particle of mass m, undergoing Brownian motion in one spatial
dimension, can be described by the Langevin equation

ṗ(t) = −γ0 p(t) + F (t) ,

⇒ mv̇(t) = −mγ0 v(t) + F (t) ,
(3.1)

where ṗ ≡ dp/dt, γ0 is a constant known as the friction coefficient, and v is the velocity of the particle.
Eq.(3.1) is a stochastic differential equation and can be thought of as consisting of two parts: i). a systematic
term −mγ0v corresponding to the friction force, and ii). a fluctuating part F (t) corresponding to a random
force [80]. It is worthwhile to note that although it is simpler to understand the Langevin equation in terms
of a friction force and a random force – on a microscopic scale both forces are caused by the particle’s
collision with the constituent modules of the immersive fluid [42].

Concerning the statistical properties of F (t), three assumptions are made. First, the average value of the
random force at time t, over a particle ensemble with the same initial velocity, vanishes

〈F (t)〉 = 0 , (3.2)

where an ensemble is defined as a large number of similar, but independent particles. Second, the autocor-
relation of the random force is related to a constant, κ0, which measures the fluctuation strength

26Original publication: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüs-
sigkeiten suspendierten Teilchen, Annalen der physik 322.8 (1905): 549-560. Translated from German.

27Original publication: Zarys kinetycznej teoriji ruchów browna i roztworów metnych, Rozprawy i Sprawozdania z Posiedzen
Wydzialu Matematyczno-Przyrodniczego Akademii Umiejetnosci 3 (1906): 257-282. Reprinted in German: Zur kinetischen
theorie der brownschen molekularbewegung und der suspensionen, Annalen der physik 326.14 (1906): 756-780. Translated
from German.

28Original publication: Théorie de la spéculation, Annales scientifiques de l’École normale supérieure. Vol. 17. (1900). Translated
from French.

29Original publication: Sur la théorie du mouvement brownien, Compt. Rendus 146 (1908): 530-533. Translated from French.
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〈F (t)F (t′)〉 = κ0 δ(t− t′) , (3.3)

where δ(x) is the Dirac delta function. This assumption implies∫ ∞
−∞
〈F (t)F (t′)〉 dt′ = κ0 . (3.4)

Lastly, F (t) is assumed to be a Gaussian process30.

To find the solutions of Eq.(3.1) – a first order linearly separable differential equation – the variables are
separated, each side is multiplied with respect to eγ0 t, and integrated between initial time t0 and t

m v̇(t) eγ0 t + mγ0 v(t) eγ0 t = F (t) eγ0 t

⇒
∫ t

t0

v̇(t′) eγ0 t
′

dt′ +

∫ t

t0

γ0 v(t′) eγ0 t
′
dt′ =

1

m

∫ t

t0

F (t′) eγ0 t
′
dt′

⇒
∫ t

t0

v̇(t′) eγ0 t
′

dt′ +

[
v(t′) eγ0 t

′
∣∣∣t
t0
−
∫ t

t0

v̇(t′) eγ0 t
′

dt′
]

=
1

m

∫ t

t0

F (t′) eγ0 t
′
dt′

⇒ v(t) = v0 e
−γ0 t +

1

m

∫ t

t0

F (t′) e−γ0 (t−t′) dt′ ,

(3.5)

where the initial velocity of the Brownian particle is denoted by v(t0) = v0, γ0 ∈ R+ and it is assumed
that t ≥ 0. Unless otherwise stated, the system is thought of as having an initial time t0 = 0, and being in
equilibrium at t =∞. As time progresses the velocity of the Brownian particle depends on the exponential
decay of the initial velocity (the first term in Eq.(3.5)) and the extra velocity caused by the random force
(the second term in Eq.(3.5)).

Since, on average, the random force vanishes (Eq.(3.2)) the average of the velocity (Eq.(3.5)) is

〈v(t)〉 = v0 e
−γ0 t , t ≥ 0 . (3.6)

Due to friction, the mean velocity decreases exponentially. Using Eq.(3.5), the autocorrelation function of
the velocity is given by

〈v(t)v(t′)〉 = v2
0 e
− γ0 (t+t′) +

1

m2

∫ t

t0

dt′′
∫ t′

t0

dt′′′ 〈F (t′′)F (t′′′)〉 e−γ0 (t′−t′′′) e−γ0 (t−t′′), (3.7)

where the two cross-terms which appeared when multiplying v(t)v(t′) are both first order in the noise and,
as such, disappear when averaging over the noise. In the limit t = t′, Eq.(3.7) reduces to

〈v2(t)〉 = v2
0 e
−2 γ0 t +

1

m2

∫ t

t0

dt′
∫ t

t0

dt′′ 〈F (t′)F (t′′)〉 e−γ0 (t−t′) e−γ0 (t−t′′) . (3.8)

Using the assumption Eq.(3.3), the mean-squared velocity becomes

30The central limit theorem can be employed to justify this assumption. The random force F (t) is thought of as resulting
from the superposition of many identically distributed random functions, since the Brownian particle has undergone multiple
collisions [81].
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〈v2(t)〉 = v2
0 e
−2 γ0 t +

κ0

m2

∫ t

t0

dt′ e−2γ0 (t−t′)

= v2
0 e
−2 γ0 t +

κ0

m2
e−2γ0 t

(
1

2 γ0
e2γ0 t

′
)∣∣∣∣t′=t

t′=t0

= v2
0 e
−2 γ0 t +

κ0

2m2 γ0

(
1 − e−2γ0 t

)
.

(3.9)

Taking the limit as t→∞, the value of the mean-squared velocity at equilibrium is

lim
t→∞

〈v2(t)〉 =
κ0

2m2 γ0
. (3.10)

Assuming the fluid is in thermodynamic equilibrium at temperature T , the average energy of the particle
takes on its equipartion value31,32 〈E〉 = T/2 [81]. Since 〈E(t)〉 := m〈v2(t)〉/2, Eq.(3.10) becomes

κ0 = 2 γ0mT , (3.11)

which describes the relationship between the magnitude of the random force κ0 and the friction coefficient
γ0. Using assumption Eq.(3.4), Eq.(3.11) can be rewritten into the form

γ0 =
1

2mT

∫ ∞
−∞
〈F (t)F (t′)〉 dt′ . (3.12)

This equation is recognised as the second fluctuation-dissipation theorem [82]. The theorem states that the
random fluctuations of the Brownian particle have the same origin as the dissipative frictional force acting
on the Brownian particle as it moves in the medium.

In order to calculate the position of the Brownian particle, x(t) := v(t)t, Eq.(3.5) can be integrated between
the initial time t0 and t

∫ t

t0

v(t′) dt′ =

∫ t

t0

v0 e
−γ0 t′ dt′ +

1

m

∫ t

t0

∫ t′′

t0

F (t′) e−γ0 (t′′−t′) dt′ dt′′

⇒
∫ t

t0

v(t′) dt′ =

∫ t

t0

v0 e
−γ0 t′ dt′ +

1

m

∫ t

t0

∫ t

t′
F (t′) e−γ0 (t′′−t′) dt′′ dt′

⇒ v(t) t − v0 t0 = −v0

γ0

(
e−γ0 t

)∣∣t′=t
t′=t0

+
1

m

∫ t

t0

F (t′)

(
− 1

γ0
e−γ0 (t′′−t′)

)∣∣∣∣t′′=t
t′′=t′

dt′

⇒ x(t) = x0 +
v0

γ0
(1 − e−γ0 t) +

1

m

∫ t

t0

F (t′)
1 − eγ0(t−t′)

γ0
dt′ ,

(3.13)

where, in the second line, the order of integration of the third term has been changed.

The average of the displacement (remembering Eq.(3.2)) is

〈x(t)〉 = x0 +
v0

γ0
(1 − e−γ0 t) . (3.14)

31The equipartition theorem of classical statistical mechanics relates the average energy of a system to its temperature.
32The Boltzmann constant is taken to be kB = 1.
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The displacement s(t) := x(t)− x0, is easily read off from Eq.(3.13)

s(t) =
v0

γ0
(1 − e−γ0 t) +

1

m

∫ t

t0

F (t′)
1 − eγ0(t−t′)

γ0
dt′ . (3.15)

In order to calculate the particle’s mean-squared displacement, 〈s2(t)〉, Eq.(3.15) can be squared and aver-
aged,

〈s2(t)〉 =
v2

0

γ2
0

(1 − e−γ0 t)2 +
1

m2 γ2
0

∫ t

t0

dt′
∫ t

t0

dt′′ 〈F (t′)F (t′′)〉
(
1− eγ0(t−t′)) (1− eγ0(t−t′′))

=
v2

0

γ2
0

(1 − 2 e−γ0 t + e−2γ0 t) +
κ0

m2 γ2
0

∫ t

t0

dt′
(
1− eγ0(t−t′))2

=
v2

0

γ2
0

(1 − 2 e−γ0 t + e−2γ0 t) +
κ0

m2 γ2
0

[
t − 2

γ0

(
1− e−γ0 t

)
+

1

2γ0

(
1− e−2γ0 t

)]

=
v2

0

γ2
0

(1 − 2 e−γ0 t + e−2γ0 t) +
κ0

2m2 γ3
0

(
2γ0 t− 3 + 4 e−γ0 t − e−2γ0 t

)
.

(3.16)

Note that, in the second line, the two cross-terms vanish and the assumption Eq.(3.3) has been used.

Further, a second average of 〈s2(t)〉 over all possible initial velocities needs to be taken. This yields,

〈s2(t)〉 =
〈v2

0〉
γ2

0

(1 − 2 e−γ0 t + e−2γ0 t) +
κ0

2m2 γ3
0

(
2γ0 t− 3 + 4 e−γ0 t − e−2γ0 t

)

=
T

m

1

γ2
0

(1 − 2 e−γ0 t + e−2γ0 t) +
T

m

1

γ2
0

(
2γ0 t− 3 + 4 e−γ0 t − e−2γ0 t

)

= 2
T

m

1

γ2
0

(
γ0 t − 1 + e−γ0 t

)
,

(3.17)

where the relation for κ0 (Eq.(3.11)), and the equipartition of energy (〈v2
0〉 = T/m) is used in the second line.

The Einstein-Sutherland relation defines the diffusion coefficient

D :=
T

γ0m
. (3.18)

Hence, Eq.(3.17) becomes

〈s2(t)〉 =
2D

γ0

(
γ0 t − 1 + e−γ0 t

)
. (3.19)

This result was first derived in 1917 by Dutch physicist Leonard Ornstein [83]. The early and late time
limits of the mean-squared displacement 〈s2(t)〉 should be examined.

(i) In the limit of early times
(
t� 1

γ0

)
: a Taylor expansion of e−γ0 t can be performed.

∴ 〈s2(t)〉 ≈ 2D

γ0

(
γ0 t − 1 +

(
1 − γ0 t +

γ2
0 t

2

2

))
= Dγ0 t

2 =
T

m
t2 , (3.20)

where the last equality comes from using the Einstein-Sutherland relation Eq.(3.18). In this limit,
known as the ballistic regime, the Brownian particle’s behaviour is proportional to time, s(t) ∼ t. This
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behaviour is expected since the initial behaviour of the Brownian particle – before it is bombarded by
a substantial number of fluid particles – is inertial (with a velocity determined by the equipartition of
energy v(t) =

√
T/m ) [42].

(ii) In the limit of late times
(
t� 1

γ0

)
: e−γ0 t → 0 as t→∞, and γ0 t becomes the dominant term.

∴ 〈s2(t)〉 ≈ 2D t . (3.21)

Eq.(3.21) is the famous equation found by Einstein in his 1905 paper [74]. In this limit, referred to
as the diffusive regime, s(t) ∼

√
t and the particle experiences a random walk. The Brownian particle

deviates from its initial course due to numerous collisions with the constituent fluid particles that
cause the Brownian particle to ‘forget’ its early time behaviour [42].

The cross-over time33 between the diffusive regime and the ballistic regime is denoted by

trelax ∼
1

γ0
, (3.22)

which represents the time it takes for a Brownian particle that had some initial velocity at t = t0 to ther-
malize in the medium.

3.2 The Generalised Langevin Model
The Langevin model can be generalised to include retardation effects. The retarded Langevin equation34 is
given by [82, 84]

ṗ(t) = −
∫ t

−∞
dt′ γ(t− t′) p(t′) + F (t) + K(t) , (3.23)

where the memory kernel γ(t− t′) allows the friction term to depend on the past trajectory of the Brownian
particle, and K(t) is an external force which acts on the system. The system is taken to be in equilibrium
in the limit t0 → −∞. The non-retarded Langevin Equation Eq.(3.1) only holds if the Brownian particle
is taken to have infinite mass with respect to the constituent fluid particles. The generalisation of the
Langevin equation to Eq.(3.23) fixes two physical problems, (i) the friction is no longer considered to be
instantaneous, (ii) a correlation can exist between random forces at different times.

The random force in Eq.(3.23) is taken to satisfy

〈F (t)〉 = 0 and 〈F (t)F (t′)〉 = κ(t− t′) , (3.24)

where κ(t) is an unspecified function. As in the non-retarded case, F (t) is assumed to be a Gaussian process.

The retarded Langevin equation is Fourier transformed35 in order to analyse its behaviour. The Fourier
transform has the following useful properties:

(i) linearity: F [ c1 g(t) + c2 h(t) ] = c1G(ω) + c2H(ω),

(ii) convolution: F [ g(t) ~ h(t) ] = F [
∫∞
−∞ g(τ)h(t− τ) dτ ] = G(ω)H(ω),

(iii) derivative property: F [ ġ(t) ] = − i wG(ω).

33In this dissertation, the cross-over time is interchangeably referred to as the relaxation time.
34The retarded Langevin Equation is also known as the generalised Langevin Equation.
35The Fourier and Inverse Fourier Transform are defined here as

G(ω) := F [ g(t) ] =

∫ ∞
−∞

g(t) eiωt dt and g(t) := F−1[G(ω) ] =

∫ ∞
−∞

G(ω) e−iωt dt

where w = −2πf .

11



Fourier transforming both sides of Eq.(3.23), and using the linearity and derivative properties gives

F
[
ṗ(t) +

∫ t

−∞
dt′ γ(t− t′) p(t′)

]
= F

[
F (t) + K(t)

]
⇒ −i ω p(ω) + F

[ ∫ t

−∞
dt′ γ(t− t′) p(t′)

]
= F (ω) + K(ω) .

(3.25)

The convolution property would be useful in calculating the second term in Eq.(3.25). However, the asym-
metric bounds of this integral (t′ ∈ [−∞, t]) are inconvenient. Hence, the memory kernel’s bounds are
redefined by introducing the causal memory kernel

γ̃(t) = Θ(t) γ(t) , (3.26)

where Θ(t) is the Heavy-side function. Notice that while γ(t − t′) is defined only for t > 0, γ̃(t − t′) is
defined for all t.

Rewriting Eq.(3.25) in terms of the causal memory kernel yields

⇒ −i ω p(ω) + F
[ ∫ ∞
−∞

dt′ γ̃(t− t′) p(t′)
]

= F (ω) + K(ω)

⇒ −i ω p(ω) + p(ω) γ̃(ω) = F (ω) + K(ω) ,

(3.27)

where, in the second line, the symmetric bounds of the integral ensured that the convolution property can
be applied. Note that in Eq.(3.27)

γ̃(ω) =

∫ ∞
−∞

dt γ̃(t) eiωt =

∫ ∞
−∞

dtΘ(t) γ(t) eiωt =

∫ ∞
0

dt γ(t) eiωt := γ[ω] , (3.28)

is actually the Fourier-Laplace transform of γ(t), while

p(ω) :=

∫ ∞
−∞

dt p(t) eiωt , (3.29)

F (ω) and K(ω) are the standard Fourier transforms of p(t), F (t) and K(t) respectively.

By rearranging Eq.(3.27) into a simpler form

p(ω) =
F (ω) + K(ω)

γ[ω] − i ω
, (3.30)

it is now easy to take the statistical average. Remembering the assumptions regarding the random force
(Eq.(3.24)), yields

〈p(ω)〉 = µ(ω)K(ω), where µ(ω) :=
1

γ[ω] − i ω
. (3.31)

The quantity µ(ω) is known as the admittance, and describes the system’s response to an external pertur-
bation. Measuring the response 〈p(ω)〉 to an external force on the system K(ω), the admittance µ(ω) can
be calculated and hence γ[w] determined.

The first fluctuation-dissipation theorem relates the admittance to the autocorrelation of the equilibrium
velocity [81, 82]. Following Eq.(3.7) the autocorrelation function of the equilibrium velocity for the retarded
Langevin equation Eq.(3.23) is
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〈v(t)v(0)〉 =
1

m2

∫ t

−∞
dt′
∫ 0

−∞
dt′′ 〈F (t′)F (t′′)〉 eγ t

′′
e−γ (t−t′)

=
κ0

m2

∫ t

−∞
dt′
∫ 0

−∞
dt′′ δ(t′ − t′′) eγ t

′′
e−γ (t−t′)

=
T

m
e−γ t

[
1 + Θ(−t)

(
e2γ t − 1

)]
=

T

m
e−γ |t| ,

(3.32)

where |t| is the absolute value of t; the random force correlation function is chosen, for simplicity, to have the
form κ(t− t′) = κ0 δ(t− t′); and Eq.(3.11) has been used in the third line. The Fourier-Laplace transform
of Eq.(3.32) is

∫ ∞
0

〈v(t)v(0)〉 eiωt dt =
T

m

1

γ[ω] − iω

⇒ µ(ω) =
m

T

∫ ∞
0

〈v(t)v(0)〉 eiωt dt ,
(3.33)

where the definition of the admittance is recognised. Eq.(3.33) is known as the first fluctuation-dissipation
theorem [82].

The power spectrum

IO(ω) =

∫ ∞
−∞

dt 〈O(t0)O(t0 + t)〉 eiωt , (3.34)

is defined for a quantity O(t). The Wiener-Khintchine theorem36 states that a stationary random process’
autocorrelation function has a spectral decomposition described by the process’ power spectrum. The
theorem allows one to compare the autocorrelation function and the power spectrum

〈O(ω)O(ω′)〉 = 2π δ(ω + ω′) IO(ω) , (3.35)

of a quantity O(t).

As previously mentioned, γ(t) and κ(t) are related to each other by the second fluctuation-dissipation
theorem. However they can be individually determined by considering two cases where different external
forces are applied on the system:

(i) the external force is periodic with frequency ω (i.e. K(t) = K0 e
−iωt), and Eq.(3.31) becomes

〈p(t)〉 = µ(ω)K0 e
−iωt . (3.36)

The memory kernel of the system γ(t) can be determined by measuring the response 〈p(t)〉 to K(t).

(ii) the external force K(t) is absent, and Eq.(3.30) becomes

p(ω) =
F (ω)

γ[ω] − i ω
. (3.37)

36The Wiener-Khintchine theorem was proven for a deterministic function by Norbert Wiener in 1930 [85].
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In order to determine γ(t) and κ(t) individually, p(ω) should first be squared and averaged to find the
relation between the power spectrum of p (Ip(ω)) and the power spectrum of F (IF (ω)). Explicitly,

〈p(ω) p(ω′)〉 =
〈F (ω)F (ω′)〉
| γ[ω] − i ω |2

⇒ 2π δ(ω + ω′) Ip(ω) =
2π δ(ω + ω′) IF (ω)

| γ[ω] − i ω |2

⇒ Ip(ω) =
IF (ω)

| γ[ω] − i ω |2
,

(3.38)

where, in the second line, the Wiener-Khintchine theorem is applied to both sides. The measured
response’s autocorrelation 〈p(ω)p(ω′)〉 defines the power spectrum Ip(ω) through Eq.(3.35). Since γ(t)
and Ip(ω) are known, IF (ω) can be determined from Eq.(3.38). Using IF (t) the function κ(t) is then
calculated from Eq.(3.24) and Eq.(3.35), i.e.

IF (t) =
κ(t− t′)

2π δ(t+ t′)
. (3.39)

For the generalised Langevin model, the relaxation time Eq.(3.22) becomes

trelax =
1∫∞

0
dt γ(t)

=
1

γ[ω = 0]
= µ(ω = 0) , (3.40)

where Eq.(3.28) and Eq.(3.31) have been used in the above simplification.

In order to gain an intuition regarding the relaxation time for the generalised Langevin model, consider an
example where the memory kernel γ(t) is sharply peaked around t = 0, i.e. the friction is approximated
as being instantaneous. The retarded effect of the friction term in Eq.(3.23) is ignored, and the integral
becomes ∫ ∞

0

dt′ γ(t− t′) p(t′) ≈
∫ ∞

0

dt′ γ(t′) p(t) =
1

trelax
p(t) , (3.41)

where Eq.(3.40) is used in the final equality. Inserting Eq.(3.41) into the generalised Langevin equation
Eq.(3.23), returns the non-retarded Langevin equation Eq.(3.1). Hence the interpretation of trelax remains
the same as for the non-retarded Langevin model: it is the time it takes for the Brownian particle to ther-
malize in the medium [42].

Another relevant time scale, the correlation (or microscopic) time, tc, is defined. The correlation time is
considered to be the width of the random force correlator function. Specifically,

tc =

∫ ∞
0

dt
κ(t)

κ(0)
. (3.42)

The quantity tc measures the time duration of a single scattering process, i.e. it indicates how long the
random force is correlated for. In most cases trelax � tc, however this does not necessarily hold for Brownian
motion dual to AdS black holes.

On a final note for this subsection, the Langevin Model can also be generalised to d spatial dimensions. In
Eq.(3.1), the momentum p(t) and random force F (t) become d-component vectors, while the assumptions
Eq.(3.2) and Eq.(3.3) generalise to

〈Fi(t)〉 = 0 and 〈Fi(t)Fj(t′)〉 = κ0 δi j δ(t− t′) , (3.43)
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where i, j = (1, 2, ... , n). The fluctuation-dissipation theorem is independent of d; as such κ0 is still given
by Eq.(3.11). The mean-squared displacement behaves like 〈s2(t)〉 ≈ 2 dD t in the late time limit

(
t� 1

γ0

)
,

where the diffusion coefficient D is still given by the Einstein-Sutherland relation Eq.(3.18).

This concludes a brief foray into some of the salient theory about Brownian motion37. It is this motion
which is responsible for the dissipative nature of a system and its approach to thermal equilibrium. Any
particle suspended in a finite temperature fluid undergoes Brownian motion and as such a probe quark
immersed in a thermal plasma behaves the same way. The AdS/CFT correspondence can be used to study
the Brownian behaviour a probe quark exhibits while interacting with the strongly-coupled thermal plasma
by modelling the external quark as a test string in the bulk theory. This is done in sections (4) and (6) for
the heavy quark case, and section (5) for the light quark case.

37For more detailed reading on the topic see [80, 86] who provide insightful early reviews, while [81, 87, 88] can be useful in
understanding some of the more modern developments in the field.
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Part II
Calculations in the Bulk

4 Analysing Heavy Quark Brownian Motion
In the previous section the theory of Brownian motion (specifically the Langevin model) was reviewed. An
external test quark in a thermal plasma is governed by these equations. In the AdS/CFT context, this is the
gauge theory – or boundary – side. The following three sections focus on the gravitational – or bulk – side,
in which a probe string is set up in an anti-de Sitter black hole background38 and the transverse fluctuations
on this string (resulting from its proximity to the Schwarzschild black hole) are examined. The AdS/CFT
correspondence is used to equate the two descriptions. Section (4) begins this incursion into the bulk theory
by modelling an on-mass-shell quark of large finite mass, identified by particle physicists as an on-mass-shell
heavy quark, as an open probe string stretched between the boundary and a Schwarzschild black hole in AdS
spacetime39. The presence of the black hole results in thermal fluctuations in the transverse XI directions
on the string. The resultant random movement of the string’s endpoint on the boundary corresponds to the
heavy quark undergoing Brownian motion. This set-up is depicted in figure (2).

Figure 2: A fundamental open string of length `0 used as a probe in an AdS black hole background. The string
starts at the boundary of the anti-de Sitter spacetime and hangs down to a stretched horizon (rs = (1 + ε) rH
where 0 < ε� 1) placed just above the Schwarzschild black hole horizon. This figure is adapted from [42].

The stretched horizon depicted in figure (2) is introduced to regulate an infrared divergence. Similarly,
a UV cut-off is imposed near the boundary to ensure the mass of the probe particle is finite40. Dirichlet
boundary conditions will be imposed on the fixed string endpoint attached to the stretched horizon, while
Neumann boundary conditions will be imposed at the boundary.

4.1 Polyakov String Equations of Motion
The Brink-Di Vecchia-Howe-Deser-Zumino action [89, 90] – or Polyakov Action [91] for short – describes
the leading order dynamics of the fundamental probe string and is given by

SP :=
1

4πα′

∫
M

d2σLP = − 1

4πα′

∫
d2σ

√
−det (γab) γ

ab gab , (4.1)

38As discussed in section (2), the bulk theory is in AdSd × Sd. However, the physics on the compact Sd space corresponds to a
set of scalar and fermion fields rotated among each other in N = 4 SYM. In this dissertation, the rotational supersymmetric
Yang-Mills charges are ignored. The calculations can be considered to take place in AdSd and at a point on Sd.

39Throughout this dissertation the test strings considered are in the probe approximation, i.e. the string’s backreaction on the
background is taken to be negligible. Further, it is assumed that no B-field is present in the background.

40Following how this terminology used in [42], the terms infrared (IR) and ultraviolet (UV) are understood to be with respect
to the boundary energy. In the bulk theory infrared means near the horizon, while ultraviolet means near the boundary.
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where the slope parameter α′ is related to the string tension T0 [92]; LP is the Lagrangian density; the
worldsheet parameter space is denoted by M (with coordinates (t, σ) ∈ [0, tf ] × [0, σf ] = M) and the
spacetime by N . The induced worldsheet metric is given by

gab := ∂aX
µ ∂bX

ν Gµν , (4.2)

Gµν is the spacetime metric, and γab is an auxiliary worldsheet metric. From here onwards, the determinant
of γab will simply be denoted by γ. Notice that a gauge choice has been made: the static gauge is used. The
reparameterization offered by the static gauge separates the time and space coordinates [92], identifying the
τ parameter with the time coordinate, τ = t.

The string worldsheet is embedded into the target spacetime by the mapping functions Xµ : M →
N ; (t, σ) → Xµ(t, σ). The canonical conjugate momentum densities Πa

µ(t, σ) are easily determined once
the functional derivative of the Polyakov Action with respect to the derivatives of these embedding func-
tions has been calculated41. Specifically,

δ(∂aXµ)SP :=

∫
M

d2σ
δSP

δ(∂aXµ(t, σ))
δ(∂aX

µ(t, σ)) . (4.3)

Using the definition of the Polyakov Action Eq.(4.1),

δ(∂aXµ)SP = − 1

2πα′

∫
M

d2σ
√
−γ γabGµν δ(∂aXµ) ∂bX

ν

=

∫
M
d2σ δ(∂aX

µ)
(
− 1

2πα′
√
−γ γabGµν ∂bXν

)
,

(4.4)

where the factor of two arises from symmetry (the variation of ∂aXµ and ∂bXν gives the same the result).
Hence the canonical momentum densities, defined as the variation of the action with respect to the derivatives
of the embedding functions, is given by

Πa
µ(t, σ) :=

δ SP
δ(∂aXµ(t, σ))

= − 1

2πα′
√
−γ γabGµν ∂bXν . (4.5)

The energy-momentum tensor Tab can be defined by the variation of the Polyakov Action with respect to
the auxiliary worldsheet metric [93],

Tab := −4π
1√
−γ

δSP
δγab

. (4.6)

Before calculating Tab, note that determining the functional derivative of the auxiliary worldsheet metric
gives the two useful relations42

δ
(
det(γab)

)
≡ δγ = γ

(
γab δγab

)
= γ

(
γab δγ

ab
)
,

and

δ
(√
−γ
)

= − 1

2
√
−γ

δγ = − γ

2
√
−γ

(
γab δγ

ab
)

= −1

2

√
−γ γab δγab .

41The functional derivative (sometimes referred to as the variational or Frécet derivative) compares the change in a functional
to the change in a function that the functional depends on. The functional derivative of functional J with respect to function
f (evaluated at point x) is defined as

δfJ =

∫ b

a

δJ

δf(x)
δf(x) dx .

42To prove the first relation make use of the matrix property δ
(
det(A)

)
= det(A)Tr

(
A−1δA

)
, where A is an n× n matrix.
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From the definition of the Polyakov Action Eq.(4.1) and the relation for δ
(√
−γ
)
, the functional derivative

of the action with respect to the auxiliary worldsheet metric can be simplified to

δγSP = − 1

4πα′

∫
M
d2σ

(
δ(
√
−γ) γabGµν ∂aX

µ ∂bX
ν +

√
−γ δγabGµν ∂aXµ ∂bX

ν
)

= − 1

4πα′

∫
M
d2σ
√
−γ δγabGµν

[
−1

2
γab

(
γcd ∂cX

µ ∂dX
ν
)

+ ∂aX
µ ∂bX

ν

]

≡
∫
M
d2σ δγab

δSP
δγab

,

(4.7)

where the final line is simply the definition of the functional derivative. Hence, the energy-momentum tensor
Tab (Eq.(4.6)), becomes

Tab = −4π
1√
−γ

[
− 1

4πα′
√
−γ Gµν

(
− 1

2
γab γ

cd ∂cX
µ ∂dX

ν + ∂aX
µ ∂bX

ν
)]

=
1

α′

(
− 1

2
γab γ

cdGµν ∂cX
µ ∂dX

ν + Gµν ∂aX
µ ∂bX

ν
)

=
1

α′

(
− 1

2
γab γ

cd gcd + gab

)
,

(4.8)

where the definition of the induced worldsheet metric (Eq.(4.2)) is used in the last line. Requiring by the
principle of least action that the energy-momentum tensor vanishes, implies

gab =
1

2
γab γ

cd gcd . (4.9)

Eq.(4.9) sets the auxiliary metric γab proportional to the induced metric gab at every point of the worldsheet.
If the proportionality constant is defined to be positive (the notions of timelike and spacelike vectors defined
by γab and gab should agree); the metrics are said to be conformal to each other. This proportionality
constant is denoted by f2. Writing,

γab = f2 gab

⇒ det(γab) = f4 det(gab)

⇒ (−γ)−
1
2 =

1

f2
(−g)−

1
2

⇒ (−γ)−
1
2 γab =

1

f2
(−g)−

1
2 f2 gab

⇒ γab√
−γ

=
gab√
−g

,

(4.10)

a constraint equation is obtained. From Eq.(4.10) it is evident that the Polyakov action has an additional
symmetry to the Nambu-Goto string action (an action defined in terms of the induced metric gab) [94, 95],
since the auxiliary worldsheet metric can be rescaled arbitrarily. Indeed, the Polyakov action is locally scale
invariant on the string worldsheet. This is known as conformal/Weyl invariance: under a local change of
scale all angles are kept fixed on the worldsheet, while the length of the lines may change.

Due to this additional symmetry, another gauge choice presents itself. Choosing the conformal gauge
γab = ηab (which restricts the choice of worldsheet to one with vanishing Euler characteristic), the constraint
Eq.(4.10) simplifies to
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ηab =
gab√
−g

, (4.11)

since ηab = ηab, and η = det(ηab) = −1. Hence, with this choice of gauge restricting the auxiliary metric γab,
the induced worlsheet metric gab becomes conformally flat. In the conformal gauge, the energy-momentum
tensor Eq.(4.8) becomes

Tab =
1

α′
Gµν

(
− 1

2
ηab η

cd∂cX
µ ∂dX

ν + ∂aX
µ ∂bX

ν
)
. (4.12)

The worldsheet parameter space coordinate system can be changed to light-cone coordinates, where the
light-cone coordinates are defined as

σ± =
1√
2

(
τ ± σ

)
and ∂± =

1

2

(
∂τ ± ∂σ

)
. (4.13)

The energy-momentum tensor can be written in terms of light-cone coordinates. This is easily done after
explicitly writing out the components of Tab (Eq.(4.12)),

Tττ = Tσσ =
1

2α′
Gµν

(
Ẋµ Ẋν + X

′µX
′ν
)
, and

Tτσ = Tστ =
1

α′
Gµν Ẋ

µX
′ν ,

(4.14)

where Ẋµ = ∂τX
µ and X

′µ = ∂σX
µ. Further, X

′µ Ẋν = ẊµX
′ν since Gµν is a diagonal matrix. In

light-cone coordinates the components of the energy-momentum tensor are

T++ =
1

2
(Tττ + Tτσ) and T−− =

1

2
(Tττ − Tτσ) , (4.15)

which is easily proven from Eq.(4.12) using the definition Eq.(4.13) and the light-cone metric (where η+− =
η−+ = −1, η++ = η−− = 0). Inserting Eq.(4.14) into Eq.(4.15), yields

T++ =
1

2

1

α′
Gµν

[1

2

(
∂τX

µ ∂τX
ν + ∂σX

µ ∂σX
ν
)

+ ∂τX
µ ∂σX

ν
]

=
1

α′
Gµν

[(1

2
(∂τ + ∂σ)Xµ

)(1

2
(∂τ + ∂σ)Xν

)]
=

1

α′
Gµν ∂+X

µ ∂+X
ν ,

(4.16)

and

T−− =
1

2

1

α′
Gµν

[1

2

(
∂τX

µ ∂τX
ν + ∂σX

µ ∂σX
ν
)
− ∂τX

µ ∂σX
ν
]

=
1

α′
Gµν

[(1

2
(∂τ − ∂σ)Xµ

)(1

2
(∂τ − ∂σ)Xν

)]
=

1

α′
Gµν ∂−X

µ ∂−X
ν .

(4.17)

As previously mentioned, due to energy conservation, the energy-momentum tensor vanishes: Tab = 0. In
light-cone coordinates T++ = T−− = 0. Hence, Eqs.(4.16, 4.17) become

Gµν ∂±X
µ ∂±X

ν = 0 , (4.18)

which are known as the Virasoro constraint equations.
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Finally, varying the Polyakov Action with respect to the string worldsheet coordinates and setting this
functional variation to zero, yields the string equations of motion in the static gauge

0 = ∂a Πa
µ − Γαµν ∂aX

ν Πa
α =: ∇a Πa

µ , (4.19)

where the Christoffel symbols are defined as

Γαµν :=
1

2
Gαγ

(
∂µGνγ + ∂ν Gµγ − ∂γ Gµν

)
. (4.20)

The details of this derivation are given in appendix (A.1). The boundary conditions chosen in order to
satisfy Eq.(4.19) are

δXµ Πa
µ

∣∣σ=σf

σ=0
= 0 . (4.21)

This becomes a Dirichlet boundary condition at the stretched horizon (r = rs)43

δXµ(t, 0) = 0 , (4.22)

and a Neumann boundary condition at the boundary endpoint44

Πa
µ(t, σf ) = 0 . (4.23)

Eq.(4.19) is the equations of motion describing the leading order string behaviour. Considering additional
behaviour, small transverse fluctuations for example, would results in supplementary equations of motion
for XI (where I denote the transverse directions). This is precisely the focus of subsection (4.3).

The general, leading order solution to the string equations of motion is found by solving Eqs.(4.18, 4.19)
with respect to the boundary conditions Eqs.(4.22, 4.23) and the relevant initial conditions. The metric
Gµν , the initial conditions, and hence the string solution will depend on the geometry of the spacetime the
test string is set up in. For example, in R1,1 the string’s worldsheet parameter spaceM (with coordinates
(t, σ) ∈ [0, tf ]× [0, σf ] = M) is embedded into the target spacetime N = R1,1 by the function

Xµ
Mink(t, σ) =

(
t, x(t, σ)

)µ
, (4.24)

where x(t, σ) still needs to be determined. This is the aim of the following two subsections, where the general
solutions for the test string in an R1,1 and an AdS3-Schwarzschild background respectively are found45.

4.2 Leading Order String Behaviour

4.2.1 Test Strings in R1,1

The embedding functions46, Xµ
Mink, given in Eq.(4.24) are found by solving the Virasoro constraints and

string equations of motion in R1,1. For simplicity, a square parameter space is chosen i.e. tf = σf . Working
in the static gauge, a Dirichlet Boundary condition at σ = 0 is imposed (corresponding to the fixed initial
position of the string endpoint)

43The stretched horizon is defined by rs = (1 + ε) rH where 0 < ε� 1. In the limit ε→ 0 implementing a Neumann boundary
condition here instead of a Dirichlet condition would be equivalent. This is done by de Boer et al. [42].

44From the bulk perspective, this endpoint terminates on a space filling flavour D7-brane which is introduced in order to ensure
the test quarks in the field theory have a finite mass [54].

45A note to the reader: a more interesting embedding occurs when studying the off-mass-shell light quark, since the parameter
space is divided into two separate regions. This will be explored in detail in subsection (5.1).

46Referred to interchangeably throughout this dissertation as the leading order solution to the string equations of motion.
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x(t, 0) = x0 ∈ R , (4.25)

and a Neumann Boundary condition at σ = σf is imposed (enforcing zero flux through the other string
endpoint)

∂σ x(t, σ)
∣∣
σ=σf

= 0 . (4.26)

For initial conditions, take the string to be static at t = 0,

∂t x(t, σ)
∣∣
t=0

= 0 , (4.27)

and stretched between x0 and x0 + `0 in the x spatial direction,

x(0, σ) = x0 +
σ

σf
`0 , `0 ∈ R+ . (4.28)

The total energy and momentum of the string are given by

E = −
∫

dσΠτ
t and p =

∫
dσΠτ

x , (4.29)

where Πa
µ are the canonical momentum densities defined in Eq.(4.5) [92]. In flat space the total energy of

the static string47 – which would be equal to the mass of a heavy test quark in the boundary theory48 – is
given by

E = − 1

2πα′

∫ σf

0

dσ ητb ηtν ∂bX
ν

= − 1

2πα′

∫ `0

0

dσ ∂τX
t

= − `0
2πα′

.

(4.30)

In the second line is has been recognised that σf = `0 (which follows from the Virasoro constraints in
flat space [52]); and the last line follows due to the static gauge choice (τ = t), and X0 = t (Eq.(4.24)).
Therefore,

E2 ≡ m2
q =

`20
4π2α′2

, (4.31)

where E2 = m2 since the string is initially static – i.e. the total momentum vanishes. The length of the
string and the magnitude of the quark’s mass are directly proportional. This same relationship holds for a
test string in an AdS-Schwarzschild background, and indeed Eq.(4.31) remains true. For proof of this see
appendix (A.3).

Since the leading order dynamics are that of a static string, the initial condition Eq.(4.28) holds for all
t ∈ R+. Hence, the embedding functions Xµ

Mink are somewhat trivially49 given by

Xµ
Mink(t, σ) =

(
t, x0 + σ

)µ
, (4.32)

with coordinates (t, σ) ∈ [0, σf ]× [0, σf ] = M.
47Static in terms of the string’s configuration, not in terms of gauge choice.
48Supposing for a moment that the gauge/string duality postulated the existence of such a boundary theory to R1,1 spacetime.
49As (t, σ) sweep out a square region of parameter space (t, σ) ∈ [0, σf ] × [0, σf ] = M, the embedding functions map out a
rectangular region (square if x0 = 0) of target spacetime.
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4.2.2 Test Strings in AdS3-Schwarzschild

Consider a test string in AdS3-Schwarzschild set up as in figure (2), page 16. Examining the leading order
behaviour of the string (no transverse fluctuations are present), the equations of motion with respect to the
boundary and initial conditions can be solved in order to find the embedding functions Xµ

AdS3-Sch(t, σ). The
AdSd-Schwarzschild metric in d dimensions is given by50

ds2
d =

r2

l2

(
−h(r; d) dt2 + d ~X2

I

)
+

l2

r2

dr2

h(r; d)
, (4.33)

where t ∈ [0,∞) is the temporal coordinate, r ∈ [0,∞) is the radial coordinate, and the transverse spatial
directions are denoted by ~XI =

(
X2, X3, ...., X(d−1)

)
∈ Rd−2. Further, l ∈ R+ is the curvature radius of

AdSd and Sd, and the blackening factor of the Schwarzschild black hole situated at the horizon, h(r; d), is
given by

h(r; d) := 1−
(
rH
r

)d−1

. (4.34)

The function h(r; d) ∈ [0, 1], where h(r; d) = 0 at the stretched horizon and h(r; d) = 1 at the AdS-
Schwarzschild boundary. The radial position of the black-brane horizon is denoted by rH ∈ R+. The
Hawking temperature of the black-brane in AdSd-Schwarzschild – corresponding to the temperature of the
thermal plasma in the boundary theory – is

T ≡ 1

β
=

(d− 1) rH
4π l2

. (4.35)

In order to consider whether r is a good radial coordinate to use to find the embedding functions, the causal
structure of the spacetime is briefly explored using probe light rays approaching the horizon (r = rH).
Considering a null geodesic (ds2

d = 0) along the radial direction ( ~XI = 0), the AdSd-Schwarzschild metric
Eq.(4.33) becomes

dt

dr
= ±

(
r2

l2
h(r; d)

)−1

, (4.36)

i.e. as a probe light ray approaches the black hole event horizon (r = rH), dt/dr → ±∞51. There appears
to be singular behaviour at r = rH (as the event horizon is approached, movement in the radial direction
with respect to the coordinate time t becomes less and less successful), but it’s actually highly dependent on
the chosen coordinate system. For instance, the singular behaviour can be assuaged if the time coordinate
is replaced with a coordinate which moves appropriately slowly along the null geodesic. Defining t := ±r∗
along this null geodesic, Eq.(4.36) can be integrated with respect to r to yield

r∗(d) = l2
∫
dr

1

r2 h(r; d)
, (4.37)

where r∗ is known as the tortoise coordinate [96]. Using Eq.(4.34) to solve the integral52 yields

r∗(d) = − l
2

r
2F1

(
1,

1

d− 1
;

d

d− 1
;
(rH
r

)d−1
)
, (4.38)

where 2F1 is the Gaussian hypergeometric function53. Using the tortoise coordinate r∗ as the new radial
coordinate presents an advantage – the horizon can be approached at the relevant rate (dt/dr∗ remains

50As mentioned in section (2), the anti-de Sitter-Schwarzschild spacetime metric Eq.(4.33) represents a Poincaré chart of AdSd
spacetime. The global AdS-Schwarzschild spacetime yields two black hole solutions at the same temperature: a black hole
with a specific heat which is negative, and a black hole in thermal equilibrium exhibiting Hawking radiation. In order to access
both solutions, global AdS-Schwarzschild geometry with a compact spatial boundary would need to be considered [42] – which
is beyond the current scope of this work.

51Think of a series of light-cones drawn from each point along the trajectory of the light ray approaching the horizon – as the
light ray approaches r = rH , the light-cones close up [96].

52The integral Eq.(4.37) was solved using Mathematica [97], and specifically an integration package called Rubi [98].
53See footnote 66, page 34, for the definition of the Gaussian hypergeometric function.

22



finite)54. Hence, to proceed in solving the string equations of motion, the coordinate set (t, r∗) is chosen
since it allows the correct boundary conditions for the fluctuations at the black hole horizon to be specified.
The tortoise coordinate, however, can only be inverted for d = 3. Therefore it is only trivial to solve the
string equations of motion to find the embedding functions of the test string in AdS3-Schwarzschild. For
d = 3, Eq.(4.38) becomes

r∗(3) =
1

2

l2

rH
ln

(
r − rH
r + rH

)
=

l2

rH
coth−1

(
− r

rH

)
, (4.39)

which can be easily inverted to find r in terms of r∗(3):

r = −rH coth
(rH r∗

l2

)
, (4.40)

where r∗(3) is given by r∗ for concision. In d = 3 dimensions, the metric Eq.(4.33) is given by55

ds2
3 :=

r2

l2

(
− h(r) dt2 + dx2

)
+

l2

r2

dr2

h(r)
, where h(r) =

r2 − r2
H

r2

= −r
2 − r2

H

l2
dt2 +

l2

r2 − r2
H

dr2 +
r2

l2
dx2 .

(4.41)

This, incidentally, is also the metric for the non-rotating BTZ black hole [99]. The AdS3-Schwarzschild
metric Eq.(4.41) can be written in terms of the coordinate set (t, r∗) using Eq.(4.40) and its differential,

dr =
r2
H

l2
csch2

(rH r∗
l2

)
dr∗ . (4.42)

Inserting Eqs.(4.40, 4.42) into the metric Eq.(4.41)56, yields

ds2
3 := −

r2
H coth2

(
rH r∗
l2

)
− r2

H

l2
dt2 +

l2

r2
H coth2

(
rHr∗
l2

)
− r2

H

r4
H

l4
csch4

(rHr∗
l2

)
dr2
∗ +

r2
H

l2
coth2

(rHr∗
l2

)
dx2

=
r2
H

l2
csch2

(rHr∗
l2

) (
−dt2 + dr2

∗
)

+
r2
H

l2
coth2

(rHr∗
l2

)
dx2 .

(4.43)

From Eq.(4.43), notice that the AdS3-Schwarzschild metric in the (t, r∗) coordinate system is conformally
flat, i.e. the chosen coordinates (t, r∗) are a set of isothermal coordinates.

As discussed previously, to regulate an infrared divergence at the horizon, the stretched horizon rs =
(1 + ε) rH (where 0 < ε � 1) is introduced. At the stretched horizon, a Dirichlet boundary condition
(comparable to Eq.(4.22)) for the test string in AdS3-Schwarzschild is implemented

Xr
AdS3-Sch(t, 0) = rs , (4.44)

while a Neumann boundary condition (comparable to Eq.(4.23)) is implemented at the boundary endpoint

∂σX
r
AdS3-Sch(t, σ)

∣∣
σ=σf

= 0 . (4.45)

The boundary conditions Eq.(4.44) and Eq.(4.45) are rewritten in terms of the coordinate set (t, r∗). The
Dirichlet condition Eq.(4.44) becomes

54The cost of this coordinate replacement is that the horizon surface is pushed to infinity, i.e. at r∗ =∞ [96].
55In AdS3-Schwarzschild there is only one transverse direction, refered to as x.
56Mathematica is used to help simplify the trigonometry. This computation (and others in this section) are explicitly shown in
Mathematica Notebook [b] (BrownianMotion.nb). For access, see appendix (A.7).
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Xr∗
AdS3-Sch(t, 0) = rs∗ , (4.46)

where rs∗ is defined using Eq.(4.39),

rs∗ =
l2

rH
coth−1

(
− rs
rH

)
, (4.47)

and the Neumann condition Eq.(4.45) becomes

0 =
r2
H

l2
csch2

(rH
l2
Xr∗

AdS3-Sch(t, σ)
)
∂σX

r∗
AdS3-Sch(t, σ)

∣∣
σ=σf

= ∂σX
r∗
AdS3-Sch(t, σ)

∣∣
σ=σf

,

(4.48)

where Eq.(4.42) is used in the first line, and the last line follows since csch(x) 6= 0 , ∀x ∈ R. The boundary
conditions in the conformally flat description of AdS3-Schwarzschild (Eqs.(4.46, 4.48)) are respectively
analogous to the boundary conditions for the test string in R1+1, Eqs.(4.25, 4.26). Hence, the embedding
functions for the test string in the conformally flat description of AdS3-Schwarzschild are the direct analogue
of Eq.(4.32). In (t, r∗) coordinates, the embedding functions are

Xµ
AdS3-Sch(t, σ) =

(
t, rs∗ + σ , 0

)µ
, (4.49)

with coordinates (t, σ) ∈ [0, σf ] × [0, σf ] = M. Using the inverse tortoise transformation Eq.(4.40), the
embedding functions Eq.(4.49) can be written in terms of the original (t, r) coordinates

Xµ
AdS3-Sch(t, σ) =

(
t, −rH coth

(rH
l2

(rs∗ + σ)
)

+ σ , 0
)µ

, (4.50)

where the position of the fixed string endpoint attached to the stretched horizon rs∗ is given by Eq.(4.47)
and the length of the string in tortoise coordinates is given by

σf =
l2

rH
coth−1

(
−rs + `0

rH

)
− rs∗ . (4.51)

Making the identification

r = −rH coth

(
rH (rs∗ + σ)

l2

)
, (4.52)

leads to agreement between Eq.(4.50), and the stretched string of de Boer et al.’s [42, 46] calculations.
Finally, notice that comparing Eq.(4.40) with Eq.(4.52), yields r∗ ≡ rs∗ + σ.

4.3 Fluctuating Test String Dynamics
In this subsection transverse fluctuations of the test string in AdS3-Schwarzschild are studied57, in order to
explore (using the AdS/CFT correspondence) the heavy quark’s Brownian motion induced by the thermal
noise in the plasma. The fluctuations are chosen to be small so as to not affect the leading order radial
solution (discovered in subsection (4.2.2)). de Boer et al. [42] outlays a semiclassical treatment of the test
string’s transverse motion in AdS3-Schwarzschild by quantizing these transverse fluctuations and relating
the behaviour of the modes on the string to the dynamics of the boundary endpoint.

The following subsection (4.3.1) derives the equations of motion for small transverse fluctuations on the test
string in AdSd-Schwarzschild. Following the method first laid out in [42], subsection (4.3.2) solves these
equations of motion to find the general solution, and from there the mean-squared displacement of the test
string’s boundary endpoint, s2(t).

57Later, in subsection (4.4), this will be generalised to AdSd-Schwarzschild.
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4.3.1 Nambu-Goto String Equations of Motion for Transverse Fluctuations

The standard Nambu-Goto action58 can be used to describe the dynamics of the transverse fluctuations on
the test string

SNG :=
1

2πα′

∫
M

d2σLNG = − 1

2πα′

∫
M
d2σ
√
−g , (4.53)

where LNG is the Lagrangian density, g := det (gab) and the induced worldsheet metric gab is given by
Eq.(4.2).

Take the embedding functions (given in AdS3-Schwarzschild by Eq.(4.50)) to be the leading order static
string solution in a (1+1)-dimensional subspace of spacetime spanned by the temporal and radial directions
(t, r), denoted by Xµ

0 (t, σ) (where Xµ
0 : [0, tf ]×[0, σf ]→ Rd−1,1; (t, σ)→ Xµ

0 (t, σ)). Consider the addition of
transverse fluctuations XI (where I ∈ (2, 3, ... , d− 1)) to Xµ

0 (t, σ). The effective action for the transverse
fluctuations appears as a correction to the leading order Nambu-Goto action. It follows that to find the
effective action for the transverse fluctuations (and from this the equations of motion) the Nambu-Goto
action needs to be expanded about Xµ

0 (t, σ), in terms of XI ,

SNG =
1

2πα′

∫
M

d2σLNG
∣∣∣
Xµ0

+ S
(2)
NG + S

(4)
NG + O

(
S

(6)
NG

)
, (4.54)

where

S
(2)
NG :=

1

2πα′

∫
M

d2σL(2)
NG and S

(4)
NG :=

1

2πα′

∫
M

d2σL(4)
NG . (4.55)

In order to explicitly calculate the expansion in Eq.(4.54), the determinant of the induced worldsheet metric
is needed. This is derived in appendix (A.3) and is given below

g := det (gab) = Grr Gtt

(
r′2 +

r′2

Gtt
GII Ẋ

2
I +

1

Grr
GII X

′ 2
I

)
, (4.56)

where Ẋ = ∂τX and X
′

= ∂σX; I indexes over the transverse directions XI =
(
X2, X3, ...., X(d−1)

)
; and

the AdSd-Schwarzschild spacetime metric Gµν is the given explicitly by Eq.(A.32). Using Eq.(4.56) the
Nambu-Goto action Eq.(4.53) becomes

SNG = − 1

2πα′

∫
M
d2σ

(
−r′2GrrGtt

) 1
2

√
1 +

1

Gtt
GII Ẋ2

I +
1

r′2Grr
GII X ′ 2I

= − 1

2πα′

∫
M
d2σ

(
−r′2GrrGtt

) 1
2

[
1 +

1

2

(
GII
Gtt

Ẋ2
I +

GII
r′2Grr

X ′ 2I

)
− 1

8

(
GII
Gtt

Ẋ2
I +

GII
r′2Grr

X ′ 2I

)2
] ∣∣∣∣∣

Xµ0

= − 1

2πα′

∫
M
d2σ
√
−g
∣∣
Xµ0
− 1

4πα′

∫
M
d2σ
√
−g
∣∣
Xµ0

(
GII
Gtt

Ẋ2
I +

GII
r′2Grr

X ′ 2I

) ∣∣∣∣∣
Xµ0

+
1

16πα′

∫
M
d2σ
√
−g
∣∣
Xµ0

(
GII
Gtt

Ẋ2
I +

GII
r′2Grr

X ′ 2I

)2
∣∣∣∣∣
Xµ0

,

(4.57)

where a Taylor expansion up to quadratic order (i.e. (1 + x)1/2 ≈ 1 + x
2 −

x2

8 ) was performed in the second
line. In the following line it is noticed from Eq.(4.56) that to leading order the determinant of the induced
worldsheet metric is simply given by

g
∣∣
Xµ0

= r′2Grr Gtt . (4.58)

58Using Eq.(4.10) the equivalence between the Polyakov action Eq.(4.1) and the Nambu-Goto action Eq.(4.53) is apparent.
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The quadratic correction in the expansion of the Nambu-Goto action (defined in Eq.(4.55)) is the effective
action for the transverse fluctuations. Matching terms between Eq.(4.54) and Eq.(4.57), the quadratic
correction is given by

S
(2)
NG = − 1

4πα′

∫
M
d2σ
√
−g
∣∣
Xµ0

(
GII
Gtt

Ẋ2
I +

GII
r′2Grr

X ′ 2I

) ∣∣∣∣
Xµ0

= − 1

4πα′

∫
M
d2σ
√
−g
∣∣
Xµ0

(
GII
Gtt

∂tX
I∂tX

I +
GII
r′2Grr

∂σX
I∂σX

I

) ∣∣∣∣
Xµ0

= − 1

4πα′

∫
M
d2σ

(√
−g
gab

GIJ

) ∣∣∣∣
Xµ0

∂aX
I∂aX

J ,

(4.59)

where a, b indexes over the static gauge worldsheet coordinates (t, σ), the spacetime metric (Eq.(A.32)) is
recognised as a diagonal matrix, and to leading order the induced worldsheet metric (see appendix (A.3))
is given by

gab
∣∣
Xµ0

=

Gtt + GII Ẋ
2 GII ẊI X

′
I

GII X
′
I ẊI r′2Grr + GII X

′ 2
I

 ∣∣∣∣∣
Xµ0

=

Gtt 0

0 r′2Grr

 . (4.60)

Hence, the effective action for the transverse fluctuations S(2)
NG is given by

S
(2)
NG = − 1

4πα′

∫
M

d2σ
(√
−g gabGIJ

)∣∣
Xµ0

∂aX
I∂bX

J

≡ 1

4πα′

∫
M

d2σ
∂2 LNG

∂
(
∂aXI

)
∂
(
∂bXJ

) ∣∣∣∣
Xµ0

∂aX
I∂bX

J ,

(4.61)

where I, J index over the transverse directions (2, 3, ... , d− 1). Comparing Eq.(4.61) with Eq.(4.1), notice
that if the auxiliary worldsheet metric is chosen to be the leading order induced worldsheet metric (γab =
gab|Xµ0 ) the action for transverse fluctuations Eq.(4.61) can be understood as an effective Polyakov Action.
It remains to be proven whether or not the quartic term S

(4)
NG is significant and contributes to the effective

action of the transverse fluctuations. The quartic term S
(4)
NG (defined in Eq.(4.55)) is given by

S
(4)
NG =

1

16πα′

∫
M
d2σ

((√
−ggabGIJ

)∣∣
Xµ0

∂aX
I ∂bX

J
)2

. (4.62)

Comparing the quadratic action term Eq.(4.61) with the quartic action term Eq.(4.62), yields

S
(2)
NG = − 1√

πα′

(
S

(4)
NG

) 1
2

. (4.63)

Hence the quartic correction term S
(4)
NG will significantly contribute to the effective action for the transverse

fluctuations when the test string is within a distance of
√
α′ from the black-brane horizon. Therefore

the quadratic action S(2)
NG (Eq.(4.61)) can be considered to solely contribute to the effective action for the

transverse fluctuations, as long as the fluctuations are small and the test string is in the region further than√
α′ away from the black-brane horizon, where

√
α′ = λ−1/4 l , (4.64)

in AdSd-Schwarzschild. Eq.(4.64) defines the fundamental string length scale
√
α′ is terms of the radius of

curvature of AdSd spacetime l and the ’t Hooft coupling λ.
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The canonical momentum densities conjugate to the transverse coordinates XI are defined as

Πa
I :=

δ S(2)
NG

δ(∂aXI)
= − 1

2πα′
(√
−g gabGIJ

)∣∣
Xµ0

∂bX
J , (4.65)

where the factor of two arises from symmetry (the variation of ∂aXI and ∂bXJ gives the same the result).

Varying the effective action for the transverse fluctuations S(2)
NG with respect to the transverse string world-

sheet coordinates XI and setting this functional variation to zero, yields the equations of motion

0 = ∂a Πa
I = ∇a Πa

I . (4.66)

These equations of motion are analogous to Eq.(4.19); but in Eq.(4.66) the Christoffel symbols (defined in
Eq.(4.20)) are identically zero (ΓαIJ = 0) due to the symmetry between each of the transverse directions.
The details of this derivation are given in appendix (A.4). The chosen boundary conditions (analogous to
Eq.(4.21)) are

Πa
I δX

I
∣∣σ=σf

σ=0
= 0 , (4.67)

which ensures the correct boundary terms vanish in the derivation of the string equations of motion for the
transverse fluctuations (Eq.(4.66)).

4.3.2 Calculating the Heavy Quark’s Mean-Squared Displacement s2(t) in AdS3-Schwarzschild

The leading order static solution to the string equations of motion is given by Eq.(4.50) in AdS3-Schwarzschild.
Following subsection (4.3.1), this solution is renamed Xµ

0 (t, σ). Adding non-zero fluctuations in the trans-
verse x-direction, the test string solution becomes

Xµ
AdS3-Sch(t, σ) = Xµ

0 (t, σ) +
(
0, 0, X(t, σ)

)µ
=
(
t, −rH coth

(rH
l2

(rs∗ + σ)
)
, X(t, σ)

)µ
. (4.68)

In AdS3-Schwarzschild, the equations of motion for the transverse fluctuations, Eq.(4.66), become

0 = ∂a

(
− 1

2πα′
(√
−g gabGIJ

) ∣∣
Xµ0
∂bX

J

)

= ∂a

((√
−g gab r

2

l2

) ∣∣∣∣
Xµ0

∂bX(t, σ)

)
,

(4.69)

where the definition transverse momentum densities Eq.(4.65) are used in the first line, and the spacetime
metric Eq.(A.32) in the second line. To leading order the induced worldsheet metric is given by Eq.(4.60).
For d = 3, this metric simplifies to

gab
∣∣
Xµ0

:=

gtt gtσ

gσt gσσ

 ∣∣∣∣∣
Xµ0

=

Gtt 0

0 r′2Grr

 =

(− r2−r2Hl2

)
0

0 r′2
(

l2

r2−r2H

)
 , (4.70)

where Eq.(4.41) is used, and r′ = ∂σr. Hence, its inverse is given by

gab
∣∣
Xµ0

:=

gtt gtσ

gσt gσσ

 ∣∣∣∣∣
Xµ0

=
1

det
(
gab|Xµ0

)
r′2Grr 0

0 Gtt

 =

(− l2

r2−r2H

)
0

0 1
r′2

(
r2−r2H
l2

)
 , (4.71)
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where det
(
gab|Xµ0

)
is given in Eq.(4.58). The indices in Eq.(4.69) can be expanded

0 = ∂σ

((√
−g gσσ r

2

l2

) ∣∣∣∣
Xµ0

∂σX(t, σ)

)
+ ∂t

((√
−g gtt r

2

l2

) ∣∣∣∣
Xµ0

∂tX(t, σ)

)

= ∂σ

(
r′
[

1

r′2

(
r2 − r2

H

l2

)]
r2

l2
∂σX(t, σ)

)
+ ∂t

(
r′
(
− l2

r2 − r2
H

)
r2

l2
∂tX(t, σ)

)

= − ∂2
t X(t, σ) +

r2 − r2
H

l4 r2

1

∂σr
∂σ

(
1

∂σr
r2
(
r2 − r2

H

)
∂σX(t, σ)

)
,

(4.72)

where Eqs.(4.58, 4.71) are used in the second line. The transverse equations of motion can be fully converted
into spacetime variables (t, r). The derivative operator ∂σ first needs to be converted into ∂r using Eq.(4.52).
The differential of Eq.(4.52) is

dr =
r2
H

l2
csch2

(
rH (rs∗ + σ)

l2

)
dσ

⇒ ∂σ =
r2
H

l2
csch2

(
rH (rs∗ + σ)

l2

)
∂r

⇒ ∂σ = −r
2
H

l2

(
1− coth2

(
rH (rs∗ + σ)

l2

))
∂r

⇒ ∂σ =
r2 − r2

H

l2
∂r .

(4.73)

Using Eq.(4.73), the transverse equations of motion Eq.(4.72) become

0 = − ∂2
t X(t, r) +

r2 − r2
H

l4 r2
∂r
(
r2
(
r2 − r2

H

)
∂rX(t, r)

)
. (4.74)

Further, the transverse equations of motion can be completely written in terms of worldsheet parameter
coordinates (t, σ) using Eqs.(4.52, 4.73), which yields

0 = − ∂2
t X(t, σ) +

1

coth2
(
rH
l2 (rs∗ + σ)

) ∂σ (coth2
(rH
l2

(rs∗ + σ)
)
∂σX(t, σ)

)
. (4.75)

To proceed in solving the linear and homogeneous partial differential equation Eq.(4.74) – or Eq.(4.75) in
(t, σ) coordinates – the method laid out in de Boer et al. [42] is followed. Explicitly, consider a mode
expansion in X,

X(t, r) = fω(r) e−iωt , (4.76)

where X(t, r) is a separable eigenmode solution to Eq.(4.74) which oscillates in time with a well-defined
angular frequency ω ∈ R+. Inserting Eq.(4.76) into Eq.(4.74), it can been seen that fω(r) satisfies the
ordinary differential equation

0 = − ∂2
t

(
fω(r) e−iωt

)
+
r2 − r2

H

l4 r2
∂r
(
r2
(
r2 − r2

H

)
∂r
(
fω(r) e−iωt

))
= ω2 fω(r) +

r2 − r2
H

l4 r2
∂r
(
r2
(
r2 − r2

H

)
∂r fω(r)

)
.

(4.77)

Defining the dimensionless quantity

ν :=
l2 ω

rH
, (4.78)
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the ordinary differential equation (Eq.(4.77)) can be rewritten as(
ν2 +

r2
H (r2 − r2

H)

l8 r2
∂r
(
r2
(
r2 − r2

H

)
∂r
))

fω(r) = 0 . (4.79)

This second order ODE has two linearly independent solutions59

f (±)
ω (r) =

1

1 ± iν

r ± irHν

r

(
r − rH
r + rH

)±iν/2
. (4.80)

In solving Eq.(4.79) the initial condition near the horizon is chosen to be

f (±)
ω (r) →

(
r − rH
r + rH

)±iν/2
as r → rH , (4.81)

i.e. the normalization at the black-brane horizon (r = rH) is taken to be 1
1± iν

r± irHν
r = 1. For convenience,

the solutions Eq.(4.80) can be partially rewritten in terms of the tortoise coordinate r∗. Rearranging
Eq.(4.52) yields

rs∗ + σ =
l2

rH
coth−1

(
− r

rH

)

⇒ rs∗ + σ =
l2

2 rH
ln

(
r − rH
r + rH

)

⇒ ±iω (rs∗ + σ) = ln

(
r − rH
r + rH

)±iν/2

⇒ e±iω (rs∗+σ) =

(
r − rH
r + rH

)±iν/2
,

(4.82)

where the definition for ν, Eq.(4.78), is used in the third line. Inputting Eq.(4.82) into Eq.(4.80) gives

f (±)
ω (r) =

1

1 ± iν

r ± irHν

r
e±iω (rs∗ +σ) , (4.83)

where the initial condition near the horizon Eq.(4.81) becomes

f (±)
ω (r) → e±iω (rs∗ +σ) as r → rH . (4.84)

From Eq.(4.84) it is apparent that f (±)
ω (r) denotes out-going (+) and in-falling (−) basis modes60. The

general solution to the ODE, fω(r), is a linear combination of these modes

fω(r) = f (+)
ω (r) + Bω f

(−)
ω (r) , (4.85)

where the constant Bω measures the difference in phase between the (+) and (−) modes, and is yet to be
determined. Imposing a Neumann boundary condition in the radial direction at the boundary endpoint,

0 = ∂r fω(r)
∣∣
r=rs+`o

= ∂r

(
1

1 + iν

r + irHν

r

(
r − rH
r + rH

)iν/2
+ Bω

1

1− iν
r − irHν

r

(
r − rH
r + rH

)−iν/2)∣∣∣∣∣
r=rs+`o

,
(4.86)

59This is consistent with Eq.(2.36) in de Boer et al.’s paper [42].
60The mode f+

ω (r) is outgoing at the horizon; while f−ω (r) is a mode which is reflected at the boundary and – after experiencing
a phase shift – falls back towards the horizon.
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enables Bω to be fixed. Note that Eqs.(4.80, 4.85) have been used in the second line. Hence, Eq.(4.86) is
solved61 to find Bω:

Bω =

(
i+ ν

−i+ ν

)(
r ν − irH
r ν + irH

)(
r − rH
r + rH

)iν ∣∣∣∣∣
r=rs+`o

=

(
1− iν
1 + iν

)(
1 + ir̃0 ν

1− ir̃0 ν

)(
r̃0 − 1

r̃0 + 1

)iν
,

(4.87)

where the dimensionless quantity

r̃0 :=
rs + `0
rH

, (4.88)

has been defined in the second line. The coefficient Bω can be partially rewritten in terms of the tortoise
coordinate r∗. To this end Eq.(4.51) is rearranged,

rs∗ + σf =
l2

rH
coth−1

(
−rs + `0

rH

)

⇒ rs∗ + σf =
l2

2 rH
ln

(
(rs + `0)− rH
(rs + `0) + rH

)

⇒ i2ω (rs∗ + σf ) = ln

(
(rs + `0)− rH
(rs + `0) + rH

)iν

⇒ ei2ω (rs∗+σf ) =

(
r̃0 − 1

r̃0 + 1

)iν
,

(4.89)

where the definition for ν, Eq.(4.78), is used in the third line; and used Eq.(4.88) in the final line. Inputting
Eq.(4.89) into Eq.(4.87), yields

Bω =

(
1− iν
1 + iν

)(
1 + ir̃0 ν

1− ir̃0 ν

)
ei2ω (rs∗ +σf ) . (4.90)

The Eqs.(4.83, 4.85, 4.90) determine fω(r) completely. The linear superposition of fω(r) for all frequencies
ω ∈ R+, yields the general solution for X(t, r),

X(t, r) :=

∫ ∞
0

dω

2π
Aω

[
fω(r) e−iωt aω + f ∗ω (r) eiωt a ∗ω

]
, (4.91)

where the mode expansion Eq.(4.76) is used, and (aω, a ∗ω) are Fourier coefficients. The constant Aω is fixed
by demanding the normalization of the appropriate basis.

To quantize the theory, the scalar field X(t, σ) and its canonically conjugate momentum P t(t, σ) are pro-
moted to operators and suitable commutation relations are imposed. From Eq.(4.91), the position operator
is given by

X̂(t, σ) :=

∫ ∞
0

dω

2π
Aω

[
fω(σ) e−iωt âω + f ∗ω (σ) eiωt â†ω

]
, (4.92)

and from Eq.(4.65) the conjugate momentum operator is given by
61Mathematica is used (see Mathematica Notebook [b]: BrownianMotion.nb).
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P̂ t(t, σ) := − 1

2πα′
(√
−g gttGII

)∣∣
Xµ0

∂tX̂(t, σ)

= − 1

2πα′
(√
−g gttGII

)∣∣
Xµ0

∫ ∞
0

dω

2π
(−i ω)Aω

[
fω(σ) e−iωt âω − f ∗ω (σ) eiωt â ∗ω

]
= − 1

2πα′

(
r2
H

l2
csch2

(
rH (rs∗ + σ)

l2

))(
− l2

r2
H

sinh2

(
rH (rs∗ + σ)

l2

))(
r2
H

l2
coth2

(
rH (rs∗ + σ)

l2

))

×
∫ ∞

0

dω

2π
(−i ω)Aω

[
fω(σ) e−iωt âω − f ∗ω (σ) eiωt â †ω

]
= − i

2πα′
r2
H

l2
coth2

(
rH (rs∗ + σ)

l2

) ∫ ∞
0

dω

2π
ω Aω

[
fω(σ) e−iωt âω − f ∗ω (σ) eiωt â †ω

]
= − i

2πα′
r2

l2

∫ ∞
0

dω

2π
ω Aω

[
fω(σ) e−iωt âω − f ∗ω (σ) eiωt â †ω

]
,

(4.93)

where Eq.(4.92) is used in the second line, r∗ ≡ rs∗ + σ is used in the fourth line, and the identification
Eq.(4.52) in the final line. The metric entries in the third line follow from using the identification Eq.(4.52)
to convert the spacetime metric as well as the induced metric, its determinant and its inverse into (t, r∗)
coordinates. From the spacetime metric Eq.(A.32),

GII = GII
∣∣
Xµ0

=
r2
H

l2
coth2

(
rH (rs∗ + σ)

l2

)
, (4.94)

while the induced metric, its determinant and its inverse (Eqs.(4.70, 4.58, 4.71)) are given by

gab ≡ gab
∣∣
Xµ0

=

Gtt 0

0 r′2Grr

 =

− r2Hl2 csch2
(
rH (rs∗ +σ)

l2

)
0

0
r2H
l2 csch2

(
rH (rs∗ +σ)

l2

)
 , (4.95)

g := det
(
gab
)
≡ det

(
gab|Xµ0

)
= −r

4
H

l4
csch4

(
rH (rs∗ + σ)

l2

)
, (4.96)

gab ≡ gab
∣∣
Xµ0

=
1

det
(
gab|Xµ0

)
r′2Grr 0

0 Gtt

 =

− l2

r2H
sinh2

(
rH (rs∗ +σ)

l2

)
0

0 l2

r2H
sinh2

(
rH (rs∗ +σ)

l2

)
 ,
(4.97)

in the preferred isothermal set of coordinates (t, r∗). In order to fix the normalization constant Aω canonical
commutation relations between X̂(t, σ) and P̂ t(t, σ) are enforced:

[
X̂(t, σ), nt P̂

t(t, σ′)
]

Σ
= i δ(σ, σ′) = i

δ(σ − σ′)√
g̃|Σ

,

[
X̂(t, σ), X̂(t, σ′)

]
Σ

= 0 =
[
nt P̂

t(t, σ), nt P̂
t(t, σ′)

]
Σ
,

(4.98)

where Σ is a Cauchy hypersurface in the xµ = (t, r)µ part of spacetime that is chosen to be a constant time
surface62, g̃ is the induced metric on Σ, and nµ is the future pointing normal to Σ (where nµ = δµt/

√
−g̃tt).

62Giving initial conditions on this hypersurface determines the future (and past) evolution uniquely.
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Additionally, canonical creation and annihilation commutation relations on the Fourier coefficient operators
(âω, â†ω) are enforced:

[
âω, â

†
ω′

]
Σ

= 2πδ(ω − ω′) ,[
âω, âω′

]
Σ

= 0 =
[
â†ω, â

†
ω′

]
Σ
.

(4.99)

Demanding consistency between the sets of commutation relations Eq.(4.98) and Eq.(4.99), requires the
normalization constant to be defined as

Aω :=
l

rH

√
πα′

ω
=

β

2
√
πω λ1/4

, (4.100)

where the second equality follows from using the definition of the AdS radius of curvature l (Eq.(4.64)), and
the relation l = βr2

H/2π from Eq.(4.35). The derivation of Eq.(4.100) is the subject of appendix (A.5).

With the constants Bω and Aω (Eqs.(4.90, 4.100) respectively) found, the general solution for transverse
equations of motion (Eq.(4.91)) is completely determined. The displacement of the boundary endpoint as
the test string undergoes these transverse fluctuations can now be calculated. The position of the endpoint
of the test string on the boundary is defined by the operator

X̂end(t) := X̂(t, σf ) . (4.101)

At the Hawking temperature, the transverse fluctuations on the string are excited. Assume – as was done
by de Boer et al. [42] – that these excitations are purely thermal and are therefore described by the
Bose-Einstein distribution

〈â†ωâω′〉 =
2π δ(ω − ω′)
eβω − 1

. (4.102)

The Bose-Einstein distribution applies when (i) quantum effects are important, (ii) particles are indistin-
guishable, and (iii) are bosons (particles which do not obey the Pauli exclusion principle). The string
boundary endpoint’s mean-squared transverse displacement, s2(t), is defined as63

s2(t) := 〈:
(
X̂end(t)− X̂end(0)

)2
:〉 = 〈:X̂2

end(t):〉 + 〈:X̂2
end(0):〉 − 2〈:X̂end(t)X̂end(0):〉 . (4.103)

In order to determine s2(t), begin by calculating the expectation value of the position of the boundary
endpoint at two different times. Using Eq.(4.92),

〈:X̂end(t1)X̂end(t2):〉

= 〈:
∫ ∞

0

dω dω′

(2π)2

β2

4π
√
ωω′
√
λ

[
fω(σf )e−iωt1 âω + f ∗ω (σf )eiωt1 â †ω

][
fω′(σf )e−iω

′t2 âω′ + f ∗ω′(σf )eiω
′t2 â †ω′

]
:〉

=
β2

4π
√
λ

∫ ∞
0

dω dω′

(2π)2

1√
ωω′

[
fω(σf )f ∗ω′(σf )e−iωt1+iω′t2〈:âωâ †ω′ :〉+ f ∗ω (σf )fω′(σf )eiωt1−iω

′t2〈:â †ωâω′ :〉
]

=
β2

4π
√
λ

∫ ∞
0

dω dω′

2π

1√
ω ω′

[
δ(ω′ − ω)fω(σf )f ∗ω′(σf )

e−iωt1+iω′t2

eβω′ − 1
+ δ(ω − ω′)f ∗ω (σf )fω′(σf )

eiωt1−iω
′t2

eβω − 1

]
=

β2

4π
√
λ

∫ ∞
0

dω

2π

1

ω

1

eβω − 1

[
fω(σf )f ∗ω (σf )e−iω(t1−t2) + f ∗ω (σf )fω(σf )eiω(t1−t2)

]
,

(4.104)
63The mean-squared transverse displacement, s2(t), is a gauge and coordinate independent quantity, i.e. it doesn’t matter which
coordinate system s2(t) is calculated in. Note that the position of the horizon is still dependent on the choice of coordinates
(as discussed in subsection (5.1.3) when motivating for the use of (t, r∗) coordinates).
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where :â †ωâω′ : = :âω′ â
†
ω: = â †ωâω′ is the normal ordering operator, and the definition of the Bose-Einstein

distribution (Eq.(4.102)) is used in the third equality. The final line follows from the property of the Dirac
delta function

∫∞
0
dk e−kxδ(k − a) = e−ax. Using the complex conjugate property Re(z) = (z + z̄)/2,

Eq.(4.104) simplifies to

〈:X̂end(t1)X̂end(t2):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf )f ∗ω (σf )e−iω(t1−t2)

)
. (4.105)

The normal ordering operator is necessary to remove the logarithmic ultraviolet divergences. Had it not
been used, extra terms would arise in the calculation of Eq.(4.104). Specifically,

〈X̂end(t1)X̂end(t2)〉

= 〈
∫ ∞

0

dω dω′

(2π)2

β2

4π
√
ωω′
√
λ

[
fω(σf )e−iωt1 âω + f ∗ω (σf )eiωt1 â †ω

][
fω′(σf )e−iω

′t2 âω′ + f ∗ω′(σf )eiω
′t2 â †ω′

]
〉

=
β2

4π
√
λ

∫ ∞
0

dω dω′

(2π)2

1√
ωω′

[
fω(σf )f ∗ω′(σf )e−iωt1+iω′t2

(
〈â †ω′ âω〉+ 2π δ(ω − ω′)

)
+ f ∗ω (σf )fω′(σf )eiωt1−iω

′t2〈â †ωâω′〉
]

=
β2

4π
√
λ

∫ ∞
0

dω dω′

2π

1√
ω ω′

[
δ(ω′ − ω)fω(σf )f ∗ω′(σf )

e−iωt1+iω′t2

eβω′ − 1
+ δ(ω − ω′)fω(σf )f ∗ω′(σf )e−iωt1+iω′t2

+ δ(ω − ω′)f ∗ω (σf )fω′(σf )
eiωt1−iω

′t2

eβω − 1

]

=
β2

4π
√
λ

∫ ∞
0

dω

2π

1

ω

[
fω(σf )f ∗ω (σf )e−iω(t1−t2)

(
1

eβω − 1
+ 1

)
+ f ∗ω (σf )fω(σf )

eiω(t1−t2)

eβω − 1

]

=
β2

4π2
√
λ

∫ ∞
0

dω

ω

[
1

eβω − 1
Re
(
fω(σf )f ∗ω (σf )e−iω(t1−t2)

)
+

1

2
fω(σf )f ∗ω (σf )e−iω(t1−t2)

]
,

(4.106)

where the relation 〈âωâ †ω′〉 = 〈â †ω′ âω〉 + 2π δ(ω − ω′) results from the commutation relation Eq.(4.99).
Following [42], the term 1

2fω(σf )f ∗ω (σf )e−iω(t1−t2) is interpreted as a logarithmic UV divergence. Since
this divergence stems from the zero-point energy and exists at zero temperature, it can be regularised by
instituting normal ordering of the oscillators aω, â †ω (as was done in Eq.(4.104)). At specific times, the
regularized correlator (Eq.(4.104)) becomes

〈:X̂end(t)X̂end(0):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf )f ∗ω (σf )e−iωt

)
, (4.107)

〈:X̂end(0)X̂end(0):〉 = 〈:X̂end(t)X̂end(t):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf )f ∗ω (σf )

)
. (4.108)

Inputting Eqs.(4.107, 4.108) into Eq.(4.103), the string boundary endpoint’s mean-squared transverse dis-
placement can be calculated

s2(t) =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(

2fω(σf )f ∗ω (σf )− 2fω(σf )f ∗ω (σf )e−iωt
)

=
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

[
fω(σf )f ∗ω (σf ) + f ∗ω (σf )fω(σf )− fω(σf )f ∗ω (σf )e−iωt − f ∗ω (σf )fω(σf )eiωt

]
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

[
fω(σf )f ∗ω (σf )

(
2− e−iωt − eiωt

)]
,

(4.109)

where in the second line the complex conjugate property Re(z) = (z + z̄)/2 is again used.
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4.3.3 The Limiting Cases of s2(t)

In this subsection the behaviour of s2(t), Eq.(4.109), in the asymptotic early and late time limits is consid-
ered. Inputting64 Eqs.(4.83, 4.85, 4.90) to calculate fω(σf )f ∗ω (σf ), yields

s2(t) =
4β2

π2
√
λ

∫ ∞
0

dω

ω

1 + ν2

1 + r̃2
0ν

2

sin2 ωt
2

eβω − 1

=
4β2

π2
√
λ

∫ ∞
0

dν

ν

1 + ν2

1 + r̃2
0ν

2

sin2 πtν
β

e2πν − 1
,

(4.110)

where the change of variables was performed using Eqs.(4.35, 4.78) in the last line. The integral in Eq.(4.110)
is tricky to analytically evaluate. Following the insights of de Boer et al. [42], the integral can be broken
into two parts,

s2(t) =
4β2

π2
√
λ

[
4
r̃2
0 − 1

r̃2
0

(∫ ∞
0

dν

ν

1

1 + r̃2
0ν

2

sin2 πνt
β

e2πν − 1

)
+ 4

1

r̃2
0

(∫ ∞
0

dν

ν

sin2 πνt
β

e2πν − 1

)]

=
β2

π2
√
λ

[
r̃2
0 − 1

r̃2
0

I1 +
1

r̃2
0

I2

]
,

(4.111)

where the integrals I1 and I2 have been defined as,

I1 := 4

∫ ∞
0

dν

ν

1

1 + r̃2
0ν

2

sin2 πνt
β

e2πν − 1
= 4

∫ ∞
0

dx

x

1

1 + a2x2

sin2 kx
2

ex − 1
, (4.112)

and

I2 := 4

∫ ∞
0

dν

ν

sin2 πνt
β

e2πν − 1
= 4

∫ ∞
0

dx

x

sin2 kx
2

ex − 1
. (4.113)

The change of variables in Eqs.(4.112, 4.113) is made by defining the new variables

x := 2πν , a :=
r̃0

2π
, k :=

t

β
. (4.114)

The integral I1 is solved by deforming the contour on the complex x plane. The solution is given by [42],

I1 =
1

2

(
ψ

(
1 +

1

2πa

)
+ ψ

(
1− 1

2πa

))
+

1

2

(
e
k
aEi

(
−k
a

)
+ e−

k
aEi

(
k

a

))
− π

2

(
1− e−

|k|
a

)
cot

(
1

2a

)

+
e−2π|k|

2

(
2F1

(
1, 1 + 1

2πa ; 2 + 1
2πa ; e−2π|k|)

1
2πa + 1

+
2F1

(
1, 1− 1

2πa ; 2− 1
2πa ; e−2π|k|)

1− 1
2πa

)

+ ln

(
2a sinh(πk)

k

)
,

(4.115)

where Ei(z) is the exponential integral65; 2F1(a, b; c; z) is the Gaussian hypergeometric function66; and
ψ(z) is the digamma function67.

64Mathematica is used to simplify the algebra (see Mathematica Notebook [b]: BrownianMotion.nb).
65For real, non-zero values of z, the exponential integral is defined as Ei(z) = −

∫∞
−z dt (e

−t/t).
66The hypergeometric function is a special function defined for |z| < 1 by the hypergeometric series, 2F1(a, b; c; z) =∑∞

k=0
(a)k(b)k

(c)k

zk

k!
.

67The digamma function is defined in terms of derivatives of the gamma function: ψ(z) := 1
Γ(z)

dΓ(z)
dz

. The function is meromor-
phic, and defined on the complex numbers C.
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The integral I2 can be solved analytically,

I2 = 4

∫ ∞
0

dx

x
e−x

1

1− e−x
sin2

(
kx

2

)

= 4

∞∑
n=1

∫ ∞
0

dx

x
sin2

(
kx

2

)
e−nx

=

∞∑
n=1

ln

(
1 +

k2

n2

)

= ln

( ∞∏
n=1

(
1 +

k2

n2

))

= ln

(
sinh (πk)

πk

)
,

(4.116)

where, in the second line, the geometric series 1/(1 − x) =
∑∞
n=0 x

n is used; and in the fourth line the
integral was performed using Mathematica [97]. In the final line, Mathematica was again used.

From Eq.(4.116) it appears that β = t/k naturally defines a cross-over time scale between the dynamics
of early and late times68. The integrals I1 and I2 can be examined in the limits (t � β) and (t � β) to
yield the early and late time behaviour respectively. Since the probe particle in the boundary theory is an
on-mass-shell heavy quark, the assumption r̃0 � 1 (equivalently a � 1) can be made. This is essentially
the statement that the large mass of the external particle translates to the distance in the radial direction
between the test string’s boundary endpoint and the stretched horizon being large69.

(I) Asymptotic Early Time Dynamics

In the early time limit t� β (equivalently k � 1� a), the integrals I1 and I2 can be simplified. Defining
a temporary variable f := 1/a, and series expanding the solution to I1 (Eq.(4.115)) around f = 0 yields

I1 =

(
− ln

(
1− e−2kπ

)
+ ln(f) + ln

(
2 sinh(kπ)

f

)
− kπ

)
+

1

2
k2πf + O

(
f2
)

=
k2π

2a
+ O

(
1

a2

)
,

(4.117)

where, in the second line, the expression is rewritten in terms of the variable a and appropriately truncated
at leading order. For the I2 integral, notice there is no a-dependence – hence a series expansion in 1/a yields
I2 = O

(
a0
)
. Therefore, in the early time limit, s2(t) (Eq.(4.111)) becomes

s2(t) |(t�β)
β2

π2
√
λ

[
r̃2
0 − 1

r̃2
0

(
π2t2

β2r̃0
+ O

(
1

r̃2
0

))
+

1

r̃2
0

O (r̃0)
0

]
=

t2

r̃0

√
λ

+ O
(

1

r̃2
0

)
, (4.118)

where the variables have been changed using Eq.(4.114). In terms of the relevant field theoretic quantities,
Eq.(4.118) can be converted using Eq.(A.43). Specifically, s2(t) = (T t2)/mq, where mq is the mass of the
probe quark and T is the temperature of the thermal plasma. Since s2(t) ∼ t2, the early time dynamics
exhibit ballistic behaviour (see Eq.(3.20))70.

68More specifically, the cross-over time (defined in Eq.(3.42)) is given by tc ∼ β r̃0 ∼ (α′mq)/(l2 T 2), where Eqs.(4.64, A.43)
have been used in the second approximation.

69The assumption r̃0 →∞ would correspond to an infinitely massive quark, such as the probe particle considered in section (6).
70The result for s2(t) in the early time limit given in Eq.(4.118) agrees exactly with de Boer et al. [42], Eq.(3.6) (after recognising
r̃0 = ρc, and making use of Eq.(4.64)).
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(II) Asymptotic Late Time Dynamics

At asymptotically late times, t � β (equivalently k � a � 1), the integrals I1 and I2 have the same
behaviour. To prove this, take the integral I1 (Eq.(4.112)) and make the change of variables x := x′

k ,

I1 = 4

∫ ∞
0

dx′

x′
1

1 + a2x′

k2

sin2 x′

2

e
x′
k − 1

(β�t)−→ 4

∫ ∞
0

dx′

x′
sin2 x′

2

e
x′
k − 1

≡ I2 , (4.119)

where it is noticed that the term a2x′

k2 � 1 can be neglected in the late time limit. Expanding the solution
to I2 (Eq.(4.116)), yields

I1|β�t ≡ I2 = ln
(

sinhπk
)
− ln

(
πk
)

= ln

(
eπk

2
− e−πk

2

)
− ln

(
πk
)

= ln
(
eπk
)
− ln

(
2
)
− ln

(
πk
)

= πk + O(ln k) ,

(4.120)

where the second line follows from trigonometric identity sinh(x) = (ex− e−x)/2, and in the fourth line the
term e−πk/2→ 0 since k � 1 at late times.

Therefore, in the late time limit, s2(t) (Eq.(4.111)) becomes

s2(t) |(t�β)
β2

π2
√
λ

[
r̃2
0 − 1

r̃2
0

(
πt

β
+ O

(
ln
t

β

))
+

1

r̃2
0

(
πt

β
+ O

(
ln
t

β

))]
=

β t

π
√
λ

+ O
(

ln
t

β

)
, (4.121)

where the variables have been changed using Eq.(4.114). Since s2(t) ∼ t, the late time dynamics exhibit
diffusive behaviour71. Concretely, at late times s2(t) = 2D t, whereD is the diffusion coefficient (Eq.(3.21)).
Comparing this to Eq.(4.121), the diffusion coefficient in AdS3-Schwarzschild is extricated,

DAdS3

HQ =
β

2π
√
λ
. (4.122)

4.4 Generalising to AdSd-Schwarzschild
For the off-mass-shell light quark case – as will be seen in subsection (5.3) – generalising the diffusion
coefficient to AdSd-Schwarzschild72 relies on the observation that the behaviour of an arbitrary virtuality
light quark at asymptotically late times is encoded in the small virtuality light quark case. Since s2(t)
in the latter case can easily be calculated for any dimensions d ≥ 3 in AdSd-Schwarzschild, the diffusion
coefficient DAdSd

LQ can be determined. Unfortunately, this method can not be applied to the on-mass-shell
heavy quark case73. The avenue left is to determine, in AdSd-Schwarzschild, the friction coefficient of
the medium plasma and relate this – via the Einstein-Sutherland equation (Eq.(3.18)) – to the diffusion
coefficient. This is precisely what is done in section (6), where the friction coefficient in AdSd-Schwarzschild
is found by first calculating the drag force on an infinitely massive, heavy quark moving through the thermal
plasma with a constant velocity74 in the bulk theory. As will be seen, the diffusion coefficient extracted
from this method75, agrees exactly with the the diffusion coefficient given in Eq.(4.122) for d = 3.

71The result for s2(t) in the late time limit given in Eq.(4.121) agrees exactly with de Boer et al. [42], Eq.(3.6) (where Eqs.(4.35,
4.64) have been used to show the equivalence).

72Remember that a general d dimensions in the bulk theory corresponds to a (d−1)-dimensional thermal plasma in the boundary
theory.

73To talk about the small virtuality/small mass limit of a massive, heavy probe quark, would be nonsensical.
74Implies that the probe quark is under the influence of an external force.
75These calculations predominantly follow the work of [22, 35].
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5 Analysing Light Quark Brownian Motion
A light quark probe in a thermal medium on the boundary starts at t = 0 as an off-mass-shell particle,
radiates energy as it travels through the thermal medium and finally stops radiating as it becomes an on-
mass-shell particle. Dual to this light quark in the boundary theory, a test string in the bulk can be thought
of as half the yo-yo string in R1,1. The latter is a string which, at a time t = 0, stretches a length of 2L
along the x-axis; as time progresses the string shrinks till, at a time t = L, it is a point; then it begins to
expand again and the process repeats. The yo-yo solution is a well-studied classical solution of the open
string [100]. There is plenty of recent work [15, 101–105] modelling gluons and light quarks as half the
initial yo-yo string contracting to a point after a time t, in order to calculate energy loss (see also [52, 106]
for other works using this string set-up). This idea of a falling string is precisely what is used in order to
study the off-mass-shell light quark in this dissertation. Such a string set-up is refered to, following the
convention of [52], as the Limp Noodle.

If the test string is placed in an AdS-Schwarzschild background, the presence of the black hole results in
thermal fluctuations in the transverse XI directions on the string. The resultant random movement of the
string endpoint on the boundary corresponds to the light quark undergoing Brownian motion. This set-up
is depicted in figure (3).

Figure 3: A fundamental falling open string of length `0 used as a probe in an AdS black hole background.
Initially, at t = ti, the string starts at the boundary of the anti-de Sitter spacetime and hangs down to a stretched
horizon (rs = (1 + ε) rH where 0 < ε� 1) placed just above the Schwarzschild black hole horizon. As time evolves
ti < t2 < t3, the string endpoint at the boundary is released and the string collapses. Its trajectory as it falls (grey,

dashed line) is predicted by [15, 101–105].

The initial static set-up of the Limp Noodle (where one of its endpoint are held fixed at the boundary) is
equivalent to the leading order static stretched string for the heavy quark, described in subsection (4.2).
This changes once the boundary endpoint of the string is released, and the endpoint starts to fall at the
local speed of light. Information, however, is also restricted to travel at the local speed of light. Hence, all
parts of the string below the falling boundary endpoint can not know whether the boundary endpoint has
remained fixed (as in the case of the heavy quark’s test string) or been released to fall until the endpoint
crashes through it. Intuitively, it is therefore expected that all parts of the string except the falling boundary
endpoint are described by a solution (embedding functions) identical to Eq.(4.32) in R1,1 and Eq.(4.50) in
AdS3-Schwarzschild, while the stretched endpoint falls at the local speed of light. This will be confirmed in
the following subsection.

5.1 Leading Order String Behaviour
The basics of string theory discussed in subsection (4.1) – leading to the Virasoro constraints (Eq.(4.18)) and
the string equations of motion (Eq.(4.19)) – hold for the light quark’s test string (Limp Noodle). In order
to solve Eqs.(4.18, 4.19) (with respect to the boundary conditions Eqs.(4.22, 4.23) and the relevant initial
conditions) to yield the embedding functions requires the correct partitioning of the worldsheet parameter
space. This partitioning was trivial in the heavy quark’s test string case, since its leading order behaviour
is static for all t. It is however more complicated in the Limp Noodle case, considering that the boundary
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string endpoint is allowed to fall at the local speed of light for t > 0. A method in which to partition the
worldsheet in order to find the solution to the string equations of motion was given by Itzhak Bars in 1994
[107], and expounded upon a year later, in 1995, by himself and a collaborator Jürgen Schulze [108]. The
Bars et al. method is summarised in the following subsection.

5.1.1 Parameterising the Limp Noodle: The Bars et al. method

The Bars et al. method can be used to solve the classical motion of a relativistic string in any (1 + 1)-
dimensional spacetime. Originally, the method was used by Bars et al. to study the motion of folded strings
in curved spacetime. However the Limp Noodle can be interpreted as half a folded (or yo-yo) string. The
application of the Bars et al. method to parameterise the Limp Noodle and find the general solution to the
string equations of motion was first proposed by Moerman et al. in [52]. The Bars et al. method can be
broken into the following steps:

(i) Define lattice-like patches on the worldsheet using the light-cone coordinates.

Figure 4: Lattice structure imposed on the worldsheet parameter space using the light-cone coordinates σ+ and
σ−. This structure is used in the Bars et al. method [107, 108] in order to determine the general solution for a

moving open string on a manifold.

(ii) Naive solutions to the string equations of motion come in four classes, referred to as: A, B, C, and
D. They can be defined only on patches of the worldsheet, since the full solution needs to satisfy
two conditions: (a) string solutions must be periodic in σ, and (b) the global time coordinate must
be an increasing function of τ and σ (in order to exclude anti-strings from appearing in the same
solutions as strings). In the static gauge the latter condition is trivially satisfied. Hence to build the
general solution from the solution classes A, B, C, D, assign the pattern of solutions to ensure forward
propagation and impose periodicity at a fixed value of τ .

(iii) Complete solutions are obtained by matching boundary conditions at the boundary of the patches.

(iv) Define a transfer operation matrix to determine future evolution. The propagation of the solution into
the future is performed by using this matrix to matching the boundary conditions while increasing τ .

The leading order dynamics of the Limp Noodle are constrained to the (1 + 1)-dimensional subspace of
AdSd-Schwarzschild described by the set of coordinates (x0, x1), where x0 denotes the temporal direction
and x1 denotes the radial direction. The metric of any (1 + 1)-dimensional subspace (where one of these
dimensions is the temporal dimension) can be transformed into a conformally flat metric [107, 108]. In
order to perform this transformation the string field in the target spacetime is redefined by the coordinate
reparametrization xµ(τ, σ) = xµ(yµ

′
(τ, σ)). This yields the new spacetime metric in terms of isothermal

coordinates yµ
′
(τ, σ), which can be related to the old spacetime metric by

Gµν(x) =
∂yµ

′

∂xµ
∂yν

′

∂xν
Gµ′ν′(y) , (5.1)
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where the isothermal coordinates in the static gauge yµ
′
(t, σ), are given by

y0′ =
1√
2

(
x0 + x1

)
and y1′ =

1√
2

(
x0 − x1

)
. (5.2)

In this isothermal coordinate frame the metric is conformally flat

ds2 = Gµ′ν′(y) dyµ
′
dyν

′
, (5.3)

and the new spacetime metric is found by inverting Eq.(5.1)

Gµ′ν′(y) =
∂xµ

∂yµ′
∂xν

∂yν′
Gµν(x) =

∂xµ

∂yµ′
∂xν

∂yν′
Gηµν , (5.4)

where the second equality follows from choosing the conformal gauge, and G = G(y0, y1) ∈ R+ is some
non-zero coordinate dependent scalar function. The metric can be calculated component-wise

G0′0′(y) = G

[
− ∂x

0

∂y0′
∂x0

∂y0′
+

∂x1

∂y0′
∂x1

∂y0′

]
= G

[
−
( 1√

2

)( 1√
2

)
+
( 1√

2

)( 1√
2

)]
= 0 ,

G0′1′(y) = G

[
− ∂x

0

∂y0′
∂x0

∂y1′
+

∂x1

∂y0′
∂x1

∂y1′

]
= G

[
−
( 1√

2

)( 1√
2

)
+
( 1√

2

)(
− 1√

2

)]
= −G ,

G1′0′(y) = G

[
− ∂x

0

∂y1′
∂x0

∂y0′
+

∂x1

∂y1′
∂x1

∂y0′

]
= G

[
−
( 1√

2

)( 1√
2

)
+
(
− 1√

2

)( 1√
2

)]
= −G ,

G1′1′(y) = G

[
− ∂x

0

∂y1′
∂x0

∂y1′
+

∂x1

∂y1′
∂x1

∂y1′

]
= G

[
−
( 1√

2

)( 1√
2

)
+
(
− 1√

2

)(
− 1√

2

)]
= 0 ,

(5.5)

where the definition of the isothermal coordinates Eq.(5.2) have been used. Hence Gµ′ν′(y) has the explicit
form

Gµ′ν′(y) = G

 0 −1

−1 0

 = G η̃µ′ν′ , (5.6)

where η̃µν is the light-cone metric, and G := G(y0′ , y1′) ∈ R+ is defined as some non-zero coordinate
dependent scalar function. Using Eq.(5.6), the metric Eq.(5.3) becomes

ds2 = −G
(
dy0′ dy1′ + dy1′ dy0′

)
. (5.7)

The string mapping functions Y µ
′
(σ+, σ−) are given by

Y 0′ =
1√
2

(
X0 + X1

)
and Y 1′ =

1√
2

(
X0 − X1

)
. (5.8)

Note that since the coordinates are isothermal, Y 0 = −Y1 and Y 1 = −Y0. The canonically conjugate
momentum densities Eq.(4.5) can be rewritten in terms of the isothermal embedding functions, Y µ

′
. In the

conformal gauge, the canonical momentum densities are given by

Πa
µ(t, σ) = − 1

2πα′
ηabGµν ∂bX

ν

⇒ Π±µ (t, σ) =
1

2πα′
η̃±bGηµν ∂bX

ν

⇒ Π±µ (t, σ) =
1

2πα′
Gηµν ∂∓X

ν ,

(5.9)
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if the light-cone coordinate frame is chosen (where ∂∓ := ∂
∂σ∓ ). Specifically,

Π±0 (t, σ) = − 1

2πα′
G∂∓X

0 and Π±1 (t, σ) =
1

2πα′
G∂∓X

1 . (5.10)

Hence the conjugate momentum densities can be defined in terms of the string mapping functions Y µ
′
(σ+, σ−)

Π±0′(t, σ) :=
1√
2

(
Π±0 + Π±1

)
= − 1√

2

1

2πα′
G∂∓(X0 −X1) ≡ − 1

2πα′
G∂∓Y

1′ , and

Π±1′(t, σ) :=
1√
2

(
Π±0 − Π±1

)
= − 1√

2

1

2πα′
G∂∓(X0 +X1) ≡ − 1

2πα′
G∂∓Y

0′ .

(5.11)

Combining the components in Eq.(5.11), renaming the indices µ′ = µ, and recognising the raising and
lowering property of the isothermal coordinates, leaves

Π±µ (t, σ) =
1

2πα′
G∂∓Y(1−µ) . (5.12)

The Virasoro constraint equations and the string equations of motion, Eqs.(4.18, 4.19), can also be rewritten
in terms the new string mapping functions Y µ

′
(σ+, σ−):

(
∂± Y

0
) (
∂± Y

1
)

= 0 ,

∂+

(
G∂−Y

1
)

+ ∂−
(
G∂+Y

1
)

= (∂0G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]
,

∂+

(
G∂−Y

0
)

+ ∂−
(
G∂+Y

0
)

= (∂1G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]
,

(5.13)

where ∂µ := ∂
∂Y µ for µ = (0, 1). Since, the derivation of Eq.(5.13) is somewhat tedious, it has been relegated

to appendix (A.2).

There are four classes of solutions to the set of equations Eqs.(5.13). Videlicet,

A : Y 0(σ+, σ−) = Y 0
A(σ+) , Y 1(σ+, σ−) = Y 1

A(σ−)

B : Y 0(σ+, σ−) = Y 0
B(σ−) , Y 1(σ+, σ−) = Y 1

B(σ+)

C : Y 0(σ+, σ−) = Y 0
C = c1 , Y 1(σ+, σ−) = fC

(
αC(σ+) + βC(σ−); Y 0

C
)

D : Y 0(σ+, σ−) = fD
(
αD(σ+) + βD(σ−); Y 0

D
)
, Y 1(σ+, σ−) = Y 1

D = c2 ,

(5.14)

where c1,2 are constants, and Y 0
A(σ+), Y 1

A(σ−), Y 0
B(σ−), Y 1

B(σ+), αC(σ+), βC(σ−), αD(σ+), and βD(σ−)
are arbitrary functions [107, 108]. The string solutions A, B, C and D given in Eq.(5.14) may be verified
by direct substitution into Eqs.(5.13). This is easy for classes A and B, since these classes exist for any
metric. Taking the derivative with respect to the light-cone coordinates σ±, yields

A : ∂−
(
Y 0
A(σ+)

)
= 0 , ∂+

(
Y 1
A(σ−)

)
= 0

B : ∂+

(
Y 0
B(σ+)

)
= 0 , ∂−

(
Y 1
B(σ−)

)
= 0 ,

(5.15)

which is used, together with the chain rule, to easily show that the A and B classes of string solutions
satisfy the Virasoro constraints and the string equations of motion Eqs.(5.13). This is harder to prove for
classes C and D. These classes are metric dependent solutions since the functions fC and fD are metric
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dependent. These functions are calculated by inverting the following relations that depend on the target
spacetime metric,

C : Y 0(σ+, σ−) = Y 0
C ,

∫
fC

dsG
(
Y 0

C , s
)

= αC(σ+) + βC(σ−)

D : Y 1(σ+, σ−) = Y 1
D,

∫
fD

dsG
(
s, Y 1

D
)

= αD(σ+) + βD(σ−) .

(5.16)

Taking the derivatives of Eq.(5.16) with respect to the light-cone coordinates σ± and making use of Eq.(5.14),

C : ∂±Y
0(σ+, σ−) = 0, G ∂±s|fC = ∂±

(
αC(σ+) + βC(σ−)

)
⇒ G∂±Y

1(σ+, σ−) = ∂±
(
αC(σ+) + βC(σ−)

)
D : ∂±Y

1(σ+, σ−) = 0, G ∂±s|fD = ∂±
(
αD(σ+) + βD(σ−)

)
⇒ G∂±Y

0(σ+, σ−) = ∂±
(
αD(σ+) + βD(σ−)

)
.

(5.17)

Using Eq.(5.17), the C and D classes of string solutions can be easily proven to satisfy the Virasoro con-
straints and string equations of motion Eqs.(5.13) by direct substitution. For the C class, the Virasoro
constraints and second equation of motion are trivially satisfied. It remains to be checked whether the first
equation of motion is satisfied. To this end, Eq.(5.17) can be substituted into the first equation of motion
in Eq.(5.13)

0 = ∂+

(
G∂−Y

1
)

+ ∂−
(
G∂+Y

1
)

= ∂+

(
G

(
1

G
∂− βC(σ−)

))
+ ∂−

(
G

(
1

G
∂+ αC(σ+)

))
= ∂+

(
∂− βC(σ−)

)
+ ∂−

(
∂+ αC(σ+)

)
= 0 .

(5.18)

Similarly for class D, the Virasoro constraints and the first equation of motion are trivially satisfied, while
the second equation of motion is verified by substituting Eq.(5.17) into Eq.(5.13).

It is not immediately obvious that the classes of solutions presented in Eq.(5.14) form a complete set. Com-
pleteness was shown in Bars et al. [108] by using the curved spacetime approach based on G/H gauged
WZW models. Note that the pattern of solutions defined on the patches of the worldsheet is metric inde-
pendent and spacetime dimension independent [107]. Hence, in order to find the general string solution for
the Limp Noodle in AdSd-Schwarzschild, start by finding the pattern of solutions defined on the patches of
the worldsheet for the Limp Noodle in flat space. This is done in the next subsection.

Prior to this, some intuition regarding the patch-parametrization of the Limp Noodle can be developed.
At a fold in a string or a string endpoint, the determinant of the induced worldsheet metric gab (Eq.(4.2))
vanishes. Hence the string endpoint’s trajectory in the target spacetime is a null geodesic (the point travels
at the local speed of light). For classes C and D – by virtue of either Y 0 or Y 1 reducing to a constant
over the patch of parameter space where the class is a solution – the induced worldsheet metric reduces
to zero, gab = 0. From this it can be deduced that all points in C or D parameter space patches map to
the trajectory of the string endpoint (or fold) in target spacetime. This is a many-to-one mapping: the
string’s endpoint in target spacetime is represented several times on the worldsheet [107]. The string (sans
the endpoints) behaves like a massive state, hence it is expected that motion of the string is described by
classes A and B – ever-present, metric independent solutions.
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5.1.2 Test Strings in R1,1

In order to study the Limp Noodle in R1,1 the static gauge ansatz is chosen

Xµ : [0, tf ]× [0, σf ] → R1,1 , (5.19)

(t, σ) → xµ(t, σ) = (t, x(t, σ))µ . (5.20)

The initial test string set-up is the same as in the heavy quark case. Eqs.(4.25, 4.26) are chosen as the
boundary conditions for the position of the fixed endpoint at the horizon and the boundary endpoint falling
in the x(t, σ) direction respectively. For initial conditions Eqs.(4.27, 4.28) are chosen i.e. at t = 0 the string
is static and stretches between x0 and x0 + `0. Set tf to be the minimum time it takes for a string to shrink
from its initial length `0 to a point x0.

In flat space the total energy of the string, which represents the mass of an initially off-mass-shell light
quark, is given by Eq.(4.31)76. The equation of motion for x(t, σ) can be easily adapted from Eqs.(A.18,
A.24), since the spacetime is R1+1 (therefore G = 1 and (∂0G) = (∂1G) = 0). Hence, the non-trivial string
equation of motion reduces to

∂+ ∂−X
1 = 0

⇒ ∂+ ∂− x(t, σ) = 0 in R1+1 ,
(5.21)

which is simply the wave equation. The general solution to Eq.(5.21) is a sum of continuous analytic
functions of σ+ and σ− (i.e. left and right movers)

x(t, σ) =
1

2

(
f1(σ+) + f2(σ−)

)
. (5.22)

Using the boundary condition Eq.(4.25) to redefine f(z) := f1(z) = 2x0 − f2(z), Eq.(5.22) becomes

x(t, σ) =
1

2

(
f(σ+) +

[
2x0 − f(σ−)

])
= x0 +

1

2

(
f(σ+) − f(σ−)

)
.

(5.23)

The Neumann boundary condition Eq.(4.26) becomes

0 = ∂σ

[
x0 +

1

2

(
f(σ+) − f(σ−)

)] ∣∣∣∣
σ=σf

=
1

2

[
∂+ f(σ+) + ∂− f(σ−)

] ∣∣
σ=σf

,

(5.24)

where the second line follows from the fact that x0 ∈ R and the definition Eq.(4.13), since ∂σf(σ+) =
(∂+ − ∂−) f(σ+) = ∂+f(σ+). To simplify Eq.(5.24) let z := t − σf , then

σ−|σ=σf = t − σf = z and σ+|σ=σf = t + σf = z + 2σf . (5.25)

76The derivation of the total energy of the test string in an AdS-Schwarzschild background is given in appendix (A.3).
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Using Eq.(5.25) and defining F (z) :=
d

dz
f(z), Eq.(5.24) becomes

0 =
1

2
[F (z + 2σf ) + F (z)]

⇒ F (z + 2σf ) = −F (z) ,

(5.26)

which shows that F (z) is anti-periodic with an interval of 2σf . The Virasoro constraint equations Eq.(4.18)
can also be rewritten in terms of F (z)

0 = η00

(
∂±X

0
) (
∂±X

0
)

+ η11

(
∂±X

1
) (
∂±X

1
)

= −
(
∂± t

) (
∂± t

)
+
(
∂± x(t, σ)

) (
∂± x(t, σ)

)
= −

(
∂± t

) (
∂± t

)
+
[
∂±

(
x0 +

1

2

(
f(σ+) − f(σ−)

))]2
.

(5.27)

The first line follows since the spacetime is R1+1, Eq.(5.20) was used in the second line, and Eq.(5.23) was
used in the final line. Eq.(5.27) breaks up into two, (+) and (−), constraint equations. For the (+) equation,
Eq.(5.27) becomes

0 = −
(

1

2

)(
1

2

)
+

(
1

2
∂+ f(σ+)

)2

⇒ − 1

4
+

1

4
F (σ+)2 = 0

⇒ F (σ+)2 = 1 .

(5.28)

Similarly, for the (−) equation F (σ−)2 = 1. Hence the Virasoro constraint equations become

F (σ±)2 = 1 , (5.29)

which implies F (σ−)2|σ=σf = 1 or equivalently F (z)2 = 1. What remains to be determined is the sign of
F (z). This is given by the anti-periodicity condition Eq.(5.26) which results in

F (z) =
(
− 1
)⌊ z+σf

2σf

⌋
, (5.30)

where bxc is the floor operation which returns the largest integer less than or equal to x. The function F (z),
plotted in figure (5), is a step function. The definition of F (z) as the derivative of f(z) with respect to z,
implies that f(z) can be found through integrating Eq.(5.30). But F (z) is a discrete function – performing
this integration involves integrating each segment of F (z) separately. Since it is already known that F (z)
is alternating (+1) or (−1) in each 2σf interval, and the integral of a constant is a straight monotonic
function; all that remains to be determined is if the function f(z) is monotonically increasing or decreasing
on each interval. Hence f(z) can be defined by

f(z) =
(
− 1
)⌊ z+σf

2σf

⌋
([(z + σf ) mod 2σf ] − σf ) + σf , (5.31)

where
(
− 1
)⌊ z+σf

2σf

⌋
defines the domain of each segment to be integrated, and ([(z + σf ) mod 2σf ] − σf )

yields 0 if z ∈ z1 σf (where z1 is an even integer) and −σf if z ∈ z2 σf (where z2 is an odd integer). The
function f(z) is a triangular wave function and is plotted in figure (5).
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-5σf -3σf -σf σf 3σf 5σf

-1

1

(i) The function F(z)

-5σf -3σf -σf σf 3σf 5σf

σf

2σf

(ii) The function f(z)

Figure 5: The functions (i) F (z) and (ii) f(z) over the range [−6σf , 6σf ], given by Eq.(5.30) and Eq.(5.31)
respectively.

Now that a specific form of the function f(z) has been obtained, x(t, σ) (Eq.(5.23)) is completely known.
For example, at t = σf , Eq.(5.23) becomes

x(σf , σ) = x0 +
1

2
(f(σf + σ) − f(σf − σ)) = x0 , (5.32)

where the second equality follows from using the definition Eq.(5.31). In studying the Limp Noodle, the
primary interest is in the behaviour of the string as it shrinks from a length of `0 to a single point x0. From
Eq.(5.32) this clearly is achieved in a t = σf amount of time; hence the choice tf = σf is made. The
worldsheet parameter space is therefore given byM = [0, σf ]× [0, σf ], i.e. the parameter space is square.

Given the insight of [106–108] the parameter space M can be minimally partitioned into two exclusive
triangular regions

M1 :=
{

(t, σ) ∈M|σ ∈ [0, σf − t]
}

M2 :=
{

(t, σ) ∈M|σ ∈ (σf − t, σf ]
}
.

(5.33)

In order to satisfy the boundary and initial conditions two classes of solutions exist, one in each of the two
parameter space regions: the upper triangular region (M2) and the lower triangular region (M1). The
embedding functions of the Limp Noodle in R1+1 is therefore given by

Xµ
Mink(t, σ) =

t, x0 +

σ, if (t, σ) ∈ M1

σf − t, if (t, σ) ∈ M2


µ

. (5.34)

The Limp Noodle embedding functions satisfy the given boundary and initial conditions. The boundary
conditions can be checked first: for σ = 0, (t, σ) ∈ M1 and the Dirichlet condition Eq.(4.25) is satisfied;
while for σ = σf , (t, σ) ∈ M2 and the Neumann condition Eq.(4.26) is satisfied. The initial conditions
are also fulfilled. For t = 0, (t, σ) ∈ M1 and the initial condition Eq.(4.27) is satisfied. Further the initial
condition Eq.(4.28) is satisfied, since σf = `0 is a requirement of the Virasoro constraints in flat space.

From Eq.(5.34), observe that the functions Xµ
Mink(t, σ) map the parameter spaceM1 region to an extended,

space-like region in the target spacetime; while the parameter spaceM2 region is mapped to a null geodesic
in the target spacetime. Null geodesics describe the trajectories of massless ‘point-like’ objects, and as such
the worldsheet is considered to be wrapped up to a point along this geodesic. Hence, the string solution
onM1 describes the entire string sans the falling endpoint, while the string solution onM2 describes the
falling endpoint. This is evident from figure (6)77.

77Details regarding figures (6)-(8) can be found in Mathematica Notebook [a] (MappingWorldSheetToTarget.nb) – see appendix
(A.7) for access.
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Figure 6: Left: The worldsheet parameter space, whereM1 is the blue region andM2 is the red region
(Eq.(5.33)). Right: The embedding functions Xµ

Mink(t, σ), Eq.(5.34), whereM1 is mapped to a space-like region
(blue region) andM2 is mapped to a null geodesic (red, dashed line) in the target spacetime.

Xµ
Mink(M2) lies on the boundary of Xµ

Mink(M1), and momentum flows between these two regions in the
target spacetime. In order to continue to satisfy the Neumann boundary condition Eq.(4.26), momentum
flows out of theM1 region at σ = σf − t, but immediately stops atM2 since any momentum flowing out
of the string endpoint would change the physics in the boundary theory78.

If Eq.(5.34) is converted into isothermal coordinates in terms of light-cone parameter space (σ+, σ−),
Y µMink(σ+, σ−) defined on the region M1 is a Bars et al. [107, 108] class A solution79 and the solution
defined on the regionM2 is a class C solution, as expected. To see this, use the definition Eq.(5.8) to define
the isothermal embedding functions onM1,

Y 0′ =
1√
2

(
t + (x0 + σ)

)
=

1√
2

(
1√
2

(
σ+ + σ−

)
+ x0 +

1√
2

(
σ+ − σ−

))
= σ+ +

1√
2
x0 =: Y 0′

(
σ+
)
,

(5.35)

where the definition of the light-cone coordinates (Eq.(4.13)) is used in the second line, and

Y 1′ =
1√
2

(
t − (x0 + σ)

)
=

1√
2

(
1√
2

(
σ+ + σ−

)
− x0 −

1√
2

(
σ+ − σ−

))
= σ− − 1√

2
x0 =: Y 1′

(
σ−
)
.

(5.36)

78An infinite force is required to stop the flow of momentum abruptly at the M1/M2 divide, and yet the string has a finite
energy density (since the string has a finite tension). This discrepancy stems from the fact that strings are fundamentally
one-dimensional objects and are not made up of d = 0 constituent objects.

79See subsection (5.1.1) for details.
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Comparing Eqs.(5.35, 5.36) against the four classes of Bars et al. solutions (Eq.(5.14)), it is obvious that
the isothermal embedding functions Y µMink(σ+, σ−) defined on the region M1 are a class A solution. This
is depicted in figure (7).

The isothermal embedding functions onM2 are given by

Y 0′ =
1√
2

(
t + (x0 + σf − t)

)
=

1√
2

(
1√
2

(
σ+ + σ−

)
+ x0 + σf −

1√
2

(
σ+ + σ−

))
=

1√
2

(x0 + σf ) =: Y 0′

C ,

(5.37)

and

Y 1′ =
1√
2

(
t − (x0 + σf − t)

)
=

1√
2

(
1√
2

(
σ+ + σ−

)
− x0 − σf +

1√
2

(
σ+ + σ−

))
= −

(
x0 + σf −

(
σ+ + σ−

))
=: Y 1′

(
σ+, σ−

)
.

(5.38)

Matching Eqs.(5.37, 5.38) with four classes of Bars et al. solutions (Eq.(5.14)) it is easily apparent that the
embedding functions Y µMink(σ+, σ−) defined on the region M2 are a class C solution. Figure (7) displays
this graphically.

Figure 7: Left: The worldsheet parameter space in light-cone coordinates (σ+, σ−), whereM1 is the blue region
andM2 is the red region. The parameter space regionsM1 andM2 are plotted from Eq.(5.33) which is converted
to (σ+, σ−) coordinates using Eq.(4.13). Right: The isothermal embedding functions Y µMink(σ

+, σ−), Eqs.(5.35,
5.36, 5.37, 5.38), whereM1 is mapped to a space-like region (blue region) andM2 is mapped to a null geodesic

(red, dashed line) in the target spacetime.

46



5.1.3 Test Strings in AdS3-Schwarzschild

In the previous subsection, the general embedding functions for the Limp Noodle in R1+1, Eq.(5.34), were
discovered. From this the embedding functions for the Limp Noodle in AdS3-Schwarzschild can be found
using the same minimal partitioning of the parameter space and the determined pattern of solution classes
on the patches of the parameter space.

In order to trivially write down the general solution for the Limp Noodle in AdS3-Schwarzschild a set of
isothermal coordinates is needed. As was shown in subsection (4.2.2), the tortoise coordinate r∗ together
with the temporal coordinate t forms such a set of coordinates in AdSd-Schwarzschild.

The Dirichlet and Neumann conditions, Eqs.(4.44, 4.45), are chosen as boundary conditions for the Limp
Noodle in AdS3-Schwarzschild. The boundary conditions can be rewritten in terms of the isothermal (t, r∗)
coordinate set. In subsection (4.2.2), it was noticed that these boundary conditions in the conformally flat
description of AdS3-Schwarzschild, Eqs.(4.46, 4.48), are respectively analogous to the boundary conditions
for the Limp Noodle (and the heavy quark test string) in R1+1, Eqs.(4.25, 4.26). Hence, the embedding
functions of the Limp Noodle in the conformally flat description of AdS3-Schwarzschild are the direct
analogue of Eq.(5.34). In (t, r∗) coordinates, the embedding functions are

Xµ
AdS3-Sch(t, σ) =

t, rs∗ +

σ, if (t, σ) ∈ M1

σf − t, if (t, σ) ∈ M2

 , 0

µ

, (5.39)

where the M1 and M2 parameter space regions are given by Eq.(5.33). Using the inverse tortoise trans-
formation Eq.(4.40), the embedding functions for the AdS3-Schwarzschild Limp Noodle (Eq.(5.39)) can be
rewritten in (t, r) coordinates

Xµ
AdS3-Sch(t, σ) =

t,
−rH coth

(
rH
l2 (rs∗ + σ)

)
, if (t, σ) ∈ M1

−rH coth
(
rH
l2 (rs∗ + σf − t)

)
, if (t, σ) ∈ M2

 , 0

µ

, (5.40)

where the position of the fixed string endpoint attached to the stretched horizon rs∗ is given by Eq.(4.47)
and the length of the string in tortoise coordinates is given by Eq.(4.51). Notice that the identification
Eq.(4.52) still holds. The embedding functions are plotted in figure (8).

Figure 8: Left: The worldsheet parameter space, whereM1 is the blue region andM2 is the red region
(Eq.(5.33)). Right: The embedding functions Xµ

AdS3-Sch(t, σ), Eq.(5.40), whereM1 is mapped to a space-like region
(blue region) andM2 is mapped to a null geodesic (red, dashed line) in the target spacetime.
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5.2 Fluctuating Test String Dynamics
As discussed previously, the boundary endpoint of the Limp Noodle falls at the local speed of light – the
same speed at which information propagates. Hence, any part of the string below the falling endpoint does
not know if the string is stretched like an on-mass-shell quark or its endpoint is falling like an off-mass-shell
quark. Therefore, the transverse fluctuations of all parts of the Limp Noodle except the falling endpoint
are described by the same transverse equations of motion as those of the on-mass-shell heavy quark’s test
string and its solution (discussed in subsections (4.3.1) and (4.3.2)).

The leading order solution to the string equations of motion – renamed Xµ
0 (t, σ) – is given by Eq.(5.40) in

AdS3-Schwarzschild. Adding non-zero fluctuations in the transverse x-direction, the Limp Noodle solution
becomes

Xµ
AdS3-Sch(t, σ)

∣∣∣
M1

= Xµ
0 (t, σ) +

(
0, 0, X(t, σ)

)µ
=
(
t, −rH coth

(rH
l2

(rs∗ + σ)
)
, X(t, σ)

)µ
. (5.41)

The transverse string equations of motion are supplied in Eq.(4.75); and its solution is given by Eq.(4.92)
in AdS3-Schwarzschild. Continuity of the string solution in spacetime means that it is unnecessary to find
the explicit string solution on theM2 parameter space region which maps onto the falling string endpoint.

5.2.1 Calculating the Light Quark’s Mean-Squared Displacement s2(t) in AdS3-Schwarzschild

Unlike in the case of the heavy quark’s test string where the boundary endpoint is fixed in the radial
direction (subsection (4.3.2)); for the Limp Noodle the position of the boundary endpoint is falling at the
local speed of light and is defined by the operator

X̂end(t) := X̂(t, σf − t) . (5.42)

As in subsection (4.3.2), in order to determine s2(t) – the falling string endpoint’s mean-squared transverse
displacement defined in Eq.(4.103) – begin by calculating the expectation value of the position of the free
endpoint at two different times. Using Eq.(4.92),

〈:X̂end(t1)X̂end(t2):〉

= 〈:
∫ ∞

0

dω dω′

(2π)2

β2

4π
√
ωω′
√
λ

[
fω(σf − t1)e−iωt1 âω + f ∗ω (σf − t1)eiωt1 â †ω

]
×
[
fω′(σf − t2)e−iω

′t2 âω′ + f ∗ω′(σf − t2)eiω
′t2 â †ω′

]
:〉

=
β2

4π
√
λ

∫ ∞
0

dω dω′

(2π)2

1√
ωω′

[
fω(σf − t1)f ∗ω′(σf − t2)e−iωt1+iω′t2〈:âωâ †ω′ :〉

+ f ∗ω (σf − t1)fω′(σf − t2)eiωt1−iω
′t2〈:â †ωâω′ :〉

]
=

β2

4π
√
λ

∫ ∞
0

dω dω′

2π

1√
ω ω′

[
δ(ω′ − ω)fω(σf − t1)f ∗ω′(σf − t2)

e−iωt1+iω′t2

eβω′ − 1

+ δ(ω − ω′)f ∗ω (σf − t1)fω′(σf − t2)
eiωt1−iω

′t2

eβω − 1

]

=
β2

4π
√
λ

∫ ∞
0

dω

2π

1

ω

1

eβω − 1

[
fω(σf − t1)f ∗ω (σf − t2)e−iω(t1−t2) + f ∗ω (σf − t1)fω(σf − t2)eiω(t1−t2)

]
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf − t1)f ∗ω (σf − t2)e−iω(t1−t2)

)
,

(5.43)
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where :â †ωâω′ : = :âω′ â
†
ω: = â †ωâω′ is the normal ordering operator80, and the definition of the Bose-Einstein

distribution (Eq.(4.102)) is used in the third equality. The penultimate equality follows from the property of
the Dirac delta function

∫∞
0
dk e−kx δ(k − a) = e−ax; and in the final line the complex conjugate property

Re(z) = (z + z̄)/2 is used. At specific times, the regularized correlator Eq.(5.43) becomes

〈:X̂end(t)X̂end(0):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf − t)f ∗ω (σf )e−iωt

)
, (5.44)

〈:X̂end(0)X̂end(0):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf )f ∗ω (σf )

)
, (5.45)

〈:X̂end(t)X̂end(t):〉 =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf − t)f ∗ω (σf − t)

)
. (5.46)

Inputting Eqs.(5.44, 5.45, 5.46) into the definition Eq.(4.103), the string falling endpoint’s mean-squared
transverse displacement can be calculated as

s2(t) =
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf − t)f ∗ω (σf − t) + fω(σf )f ∗ω (σf )− 2fω(σf − t)f ∗ω (σf )e−iωt

)
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

[
fω(σf − t)f ∗ω (σf − t) + fω(σf )f ∗ω (σf )− fω(σf − t)f ∗ω (σf )e−iωt

− f ∗ω (σf − t)fω(σf )eiωt
]

=
β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

[(
fω(σf − t)− fω(σf )eiωt

) (
f ∗ω (σf − t)− f ∗ω (σf )e−iωt

)]
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

∣∣fω(σf − t)− fω(σf )eiωt
∣∣2 ,

(5.47)

where in the second line the complex conjugate property Re(z) = (z + z̄)/2 is again used, and in the final
line another complex conjugate property |z|2 = z z̄ is used.

5.2.2 The Limiting Cases of s2(t)

The mass (or virtuality) of the probe, off-mass-shell light quark81 in the boundary theory determines the
length of the test string `0 in the bulk. Specifically82,

r̃0rH ≡ rc := (rs + `0) ⇐⇒ 2π α′(Mrest + ∆m) , (5.48)

where Mrest(T ) is the static thermal mass of external particle83 and ∆m(T ) is the thermal rest mass shift.
In the boundary theory this corresponds to the virtuality of the probe light quark being much less than the
temperature of the thermal plasma, i.e. Q2 � T 2. Equivalently in the dual gravitational picture,

80Normal ordering of the annihilation and creation operators âω , â †ω is used to remove logarithmic UV divergences.
81An off-mass-shell quark does not satisfy Einstein’s energy and momentum relation E2 = (pc)2 + (2mc)2. In the case of the
light quark it starts at t = 0 as an off-mass-shell particle (corresponding to the initial static string), radiates energy as it travels
through the thermal medium (string contracts as the boundary endpoint falls at the local speed of light), and finally stops
radiating as it becomes an on-mass-shell particle.

82See table (1), page 6, for a comprehensive dictionary between quantities in the boundary theory and the bulk theory.
83In the AdS5/N = 4 SYM case, this is the free energy of a quark at rest in N = 4 SYM plasma. In the limit of zero temperature
it is equal to the QCD Lagrangian quark mass, mq [68].

49



Q2 � T 2 =⇒ λ `20
4π2 l4

� 1

β2
=⇒ 4λ

(d− 1)2

`20
r2
H

� 1 =⇒ `0 � rH , (5.49)

for fixed λ. In the second equality, the Hawking temperature Eq.(4.35) and the definition of the quark mass
(or virtuality) Eq.(4.31) is used; and in the third equality, Eq.(4.35) is used again. In the small virtuality
limit, the minimum radius of the space filling D7-brane is small, i.e. r̃0 → 1 + ε, where 0 < ε� 1 and r̃0 is
defined in Eq.(4.88). In juxtaposition, the large virtuality limit refers r̃0 →∞.

In the current subsection the string falling endpoint’s mean-squared transverse displacement, s2(t), is exam-
ined in a number of different limiting cases. Videlicet, the small virtuality case and the arbitrary virtuality
case. In both of these cases, the asymptotically early time and the asymptotically late time limit is ex-
plored. For the arbitrary virtuality case, a further limit of small or large virtuality can be considered. It is
expected that the large virtuality, early time limit will correspond exactly with the early time limit of the
on-mass-shell heavy quark – since, at early times the light quark’s test string is static (i.e. the boundary
endpoint has not yet begun to fall).

5.2.2.1 Small Virtuality

In this subsection the behaviour of s2(t), Eq.(5.47), in the small virtuality limit is considered; and after
obtaining a suitable expression for s2

small(t), the asymptotic early and late time dynamics are explored. The
defining condition for the small virtuality limit is given in Eq.(5.49). This equation implies84

coth2

(
rH (rs∗ + σ)

l2

)
→ 1, since `0 � rH , (5.50)

where σ ∈ [0, σf ]. Using Eq.(5.50) the equations of motion in AdS3-Schwarzschild, Eq.(4.75), simplifies to
the wave equation

− ∂2
t X(t, σ) + ∂2

σX(t, σ) = 0 . (5.51)

The plane wave solutions to Eq.(5.51) are the near-horizon solutions described in Eq.(4.84). Hence in the
small virtuality limit the in-falling (+) and out-going (−) modes of the general solution fω(σ) are given by,

f (±)
ω (σ) = e±iω (rs∗ +σ) . (5.52)

The general solution fω(σ) is a linear combination of the in-falling and out-going modes (defined in
Eq.(4.85)). The coefficient Bω is fixed in the same way as in subsection (4.3.2): by imposing a Neumann
boundary condition at the falling string endpoint in the radial direction at t = 0,

∂σ fω(σ)
∣∣
σ=σf

= 0 . (5.53)

84Explicitly, for the case σ = σf ,

coth2

(
rH (rs∗ + σ)

l2

)
= coth2

(
rH (rs∗ + σf )

l2

)
= coth2

(
coth−1

(
−
rs + `0

rH

))
≈ coth2

(
coth−1

(
−
rs

rH

))
(ε→0)−→ 1

where the second equality follows from using the definition for σf , Eq.(4.51); the approximation follows since `0 � rH ; and
in taking the limit the definition of the stretched horizon rs = (1 + ε) rH (where 0 < ε� 1) is used. The limit follows since,
coth−1(−(1 + ε))→ −∞ as ε→ 0; and coth2(x)→ 1 as x→ −∞. Further, for the case σ = 0,

coth2

(
rH (rs∗ + σ)

l2

)
= coth2

( rH rs∗

l2

)
= coth2

(
coth−1

(
−
rs

rH

))
(ε→0)−→ 1

where the first equality follows from the definition for rs∗, Eq.(4.47).
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Using Eqs.(4.85, 5.52), Eq.(5.53) can be easily solved in Mathematica85 to yield

Bω = ei2ω (rs∗ +σf ) . (5.54)

Hence, the general solution fω(σ) is given by,

fω(σ) = f (+)
ω (σ) + Bω f

(−)
ω (σ)

= e+iω (rs∗ +σ) + ei2ω (rs∗ +σf ) e−iω (rs∗ +σ)

= 2eiω (rs∗ +σf ) cos
(
ω (σ − σf )

)
,

(5.55)

where Eqs.(5.52, 5.54) are used in the second line; and the third line follows from the trigonometric iden-
tity cos(x) = (eix + e−ix)/2. In order to calculate the falling string endpoint’s mean-squared transverse
displacement in the small virtuality limit, Eq.(5.55) is substituted into Eq.(5.47):

s2
small(t) := s2(t)

∣∣
Q2�T 2 =

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

∣∣∣2eiω(rs∗+σf ) cos
(
ωt
)
− 2eiω (rs∗+σf )eiωt

∣∣∣2
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

∣∣∣eiω(rs∗+σf )
(
e−iωt − eiωt

)∣∣∣2
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

(
eiω(rs∗+σf )

(
e−iωt − eiωt

))(
e−iω(rs∗+σf )

(
eiωt − e−iωt

))
=

β2

4π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

(
2− e−2iωt − e2iωt

)
=

β2

π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
sin2(ωt) ,

(5.56)

where the complex conjugate property |z|2 = z z̄ is used in the third line, and the trigonometric identities
cos(x) = (eix + e−ix)/2 and sin2(x) = (1− cos(2x))/2 are used in the final line. The integral in Eq.(5.56)
can be solved analytically. Introducing a change of variables

x := βω and k :=
t

β
, (5.57)

Eq.(5.56) becomes

s2
small(t) =

β2

π2
√
λ

∫ ∞
0

dx

x
e−x

1

1− e−x
sin2(kx)

=
β2

π2
√
λ

∞∑
n=1

∫ ∞
0

dx

x
sin2(kx) e−nx

=
β2

4π2
√
λ

∞∑
n=1

ln

(
1 +

4k2

n2

)

=
β2

4π2
√
λ

ln

( ∞∏
n=1

(
1 +

4k2

n2

))

=
β2

4π2
√
λ

ln

(
β

2π t
sinh

(
2π t

β

))
,

(5.58)

85See Mathematica Notebook [b]: BrownianMotion.nb.
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where in the second line the geometric series 1/(1−x) =
∑∞
n=0 x

n is used; and in the third line the integral
was performed using Mathematica86. In the final line, Mathematica was again used, followed by a change of
variables using Eq.(5.57). Notice from Eq.(5.58) that β naturally defines a cross-over time scale between the
dynamics of early and late times87, and that the cross-over time is independent of the length of the string `0.

(I) Asymptotic Early Time Dynamics

Since, in the early time limit t� β, Eq.(5.58) can be expanded in powers of k = t/β. For small k a Taylor
expansion (about k = 0) can be performed. Explicitly, ln(sinh(x)/x) = x2/6− x4/180 + x6/2835 + O(x8)
(where x = 2kπ). Therefore, Eq.(5.58) becomes

s2
small(t)

(t�β)−→ β2

4π2
√
λ

[
2π2 t2

3β2
+ O

(
t

β

)4
]

=
t2

6
√
λ

+ O
(
t

β

)4

. (5.59)

Since s2
small(t) ∼ t2, the early time dynamics exhibit ballistic behaviour88 (see Eq.(3.20)).

(II) Asymptotic Late Time Dynamics

At asymptotically late times (t � β) the integral in Eq.(5.58) can be expanded in powers of 1/k = β/t.
Specifically,

s2
small(t) =

β2

4π2
√
λ

[
ln
(

sinh
(
2π k

))
+ ln

( 1

2π k

)]
=

β2

4π2
√
λ

[
ln
(
e2π k

(
1 − e−4π k

))
+ ln

(
1

4π k

)]

=
β2

4π2
√
λ

[
2π t

β
+ ln

(
1 − e−4π k

)
+ ln

(
β

4π t

)]
(β�t)−→ β t

2π
√
λ

+
β2

4π2
√
λ

ln

(
β

4π t

)
+ O

(
β2 e

−4π t
β

)
,

(5.60)

where the second line follows from trigonometric identity sinh(x) = (ex − e−x)/2; and, in the final line, the
expansion ln (1− x) = −x − x2/2 − x3/3 + O(x4) (where x = e−4π k) is performed, since e−4π k → 0 in
the late time regime (k � 1).

Since s2
small(t) ∼ t, the late time dynamics exhibit diffusive behaviour89. From Eq.(3.21) it is expected that

s2
small(t) = 2D t at late times, where D is the diffusion coefficient. Comparing this to Eq.(5.60), it is easy
to see that the diffusion coefficient is given by

DAdS3

LQ =
β

4π
√
λ
. (5.61)

The diffusion coefficient for the on-mass-shell heavy quark is given by Eq.(4.122). By comparing Eq.(5.61)
with Eq.(4.122), notice that an off-mass-shell small virtuality light quark which is initially at rest in a
strongly-coupled thermal plasma has a diffusion coefficient related to that of a massive on-mass-shell heavy
quark by

DAdS3

LQ =
1

2
DAdS3

HQ . (5.62)

The factor of 1/2 may arise through the differences in partitioning the worldsheet for the heavy and light
quark test strings. This is explored further in subsection (6.2).

86See Mathematica Notebook [b]: BrownianMotion.nb.
87See footnote 68, page 35.
88The early time limit of the on-mass-shell heavy quark also displays ballistic behaviour (see Eq.(4.118)).
89The late time limit of the on-mass-shell heavy quark also displays diffusive behaviour (see Eq.(4.121)).
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5.2.2.2 Arbitrary Virtuality

(I) Asymptotic Early Time Dynamics

Now consider a probe light quark with arbitrary virtuality. The behaviour of s2(t), Eq.(5.47), at asymptot-
ically early times is considered. Since t� β, Eq.(5.47) can be expanded in powers of k = t/β,

∣∣fω(σf − t)− fω(σf )eiωt
∣∣2

(t�β)−→
(
fω(σf )− fω(σf ) eiωt

) (
f∗ω(σf )− f∗ω(σf ) e−iωt

)
= 2 fω(σf )f∗ω(σf )− fω(σf )f∗ω(σf ) e−iωt − fω(σf )f∗ω(σf ) eiωt

=
∣∣fω(σf )

∣∣2 (2 − e−iωt − eiωt
)

=
∣∣fω(σf )

∣∣2(2−
(

1− iωt− ω2t2

2
+
iω3t3

6

)
−
(

1 + iωt− ω2t2

2
− iω3t3

6

)
+O(ωt)4

)
=
∣∣fω(σf )

∣∣2 (ω2t2 +O(ωt)4
)

= 4
1 + ν2

1 + r̃0ν2

(
ω2t2 +O(ωt)4

)
,

(5.63)

where the second line follows since in the early time regime t� β implies fω(σf − t) ≈ fω(σf ); and in the
fifth line eiωt and e−iωt are Taylor expanded. The final line follows90 from using Eqs.(4.83, 4.85, 4.90) to
calculate

∣∣fω(σf )
∣∣2 = fω(σf )f ∗ω (σf ). Inputting Eq.(5.63) into Eq.(5.47), yields

s2(t)
∣∣
t�β =

β2 t2

π2
√
λ

∫ ∞
0

dω
ω

eβω − 1

1 + ν2

1 + r̃0ν2

=
4 t2√
λ

∫ ∞
0

dν
ν

e2πν − 1

1 + ν2

1 + r̃0ν2
,

(5.64)

where, in the second line, a change of variables was performed using Eqs.(4.35, 4.78). Eq.(5.64) is evaluated
by breaking the integral into two parts and recognising that these terms are the series expansion to O(k)0

(around k = 0, where k = t/β) of the second derivatives with respect to k of the integrals I1 and I2 given
in Eq.(4.112) and Eq.(4.113) respectively. To clarify, the second derivative of I1 and I2 are given by

I1 = 4

∫ ∞
0

dx

x(1 + a2x2)

sin2
(
kx
2

)
ex − 1

⇒ ∂2I1
∂k2

∣∣∣∣
k=0

= 4π

∫ ∞
0

dν
ν

e2πν − 1

1

1 + r̃2
0 ν

2
,

(5.65)

and,

I2 = 4

∫ ∞
0

dx

x

sin2
(
kx
2

)
ex − 1

⇒ ∂2I2
∂k2

∣∣∣∣
k=0

= 4π

∫ ∞
0

dν
ν

e2πν − 1
,

(5.66)

90Mathematica is used to simplify the algebra. This computation (and others in this section) are explicitly shown in Mathematica
Notebook [b] (BrownianMotion.nb). For access, see appendix (A.7).
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where x = 2πν, a = r̃0/(2π) and k = t/β. Explicitly rewriting Eq.(5.64) in terms of ∂2
kI1 and ∂2

kI2 yields

s2(t)
∣∣
t�β =

4 t2√
λ

∫ ∞
0

dν

(
r̃2
0 − 1

r̃2
0

ν

e2πν − 1

1

1 + r̃2
0ν

2
+

1

r̃2
0

ν

e2πν − 1

)

=
t2

π
√
λ

(
r̃2
0 − 1

r̃2
0

∂2I1
∂k2

∣∣∣∣
k=0

+
1

r̃2
0

∂2I2
∂k2

∣∣∣∣
k=0

)
.

(5.67)

The solution to the integrals I1 and I2 are given by Eqs.(4.115, 4.116) respectively. Taking the second
derivative with respect to k followed by a series expansion to O(k)0 (around k = 0) for each of these
solutions, yields

∂2I1
∂k2

∣∣∣∣
k=0

=
2
(
−π2 ln

(
r̃0
2π

)
+ π2 ln

(
2π
r̃0

)
+ π3 cot

(
π
r̃0

)
− π2ψ

(
1 + 1

r̃0

)
− π2ψ

(
1− 1

r̃0

)
− 2π2 ln(2π)

)
r̃2
0

,

(5.68)

where it was recognised in the early time case91 that |k| = k, and ψ(z) is the digamma function. In addition,

∂2I2
∂k2

∣∣∣∣
k=0

=
π2

3
. (5.69)

Inputting Eq.(5.68) and Eq.(5.69) into Eq.(5.67), yields92

s2(t)
∣∣
t�β =

t2

6r̃4
0

√
λ

[
r̃2
0 + 6

(
1− r̃2

0

)(
2 ln(r̃0)− π cot

(
π

r̃0

)
+ ψ

(
1 +

1

r̃0

)
+ ψ

(
1− 1

r̃0

))]
. (5.70)

The limit of small or large virtuality can now be considered.

(i) Small Virtuality Limit (r̃0 → 1 + ε)
Using Mathematica to take the limit of Eq.(5.70) as r̃0 → 1 + ε, yields

s2(t)
∣∣
t�β

(r̃0→1+ε)−→ t2

6
√
λ

+ O(ε) . (5.71)

This agrees exactly with Eq.(5.59), i.e. taking the early time limit followed by the small virtuality limit
is equivalent to taking small virtuality limit followed by the early time limit – a necessary consistency
check.

(ii) Large Virtuality Limit (r̃0 →∞)
Since r̃0 � 0, define a variable y = 1/r̃0 (where y � 0) so that a Taylor expansion in y can be
performed. Rewriting Eq.(5.70) in terms of y and performing a series expansion (around y = 0) in
Mathematica, yields

s2(t)
∣∣
t�β

(r̃0→∞)−→ t2

r̃0

√
λ

+ O
(

1

r̃0

)2

. (5.72)

As expected, the large virtuality early time behaviour corresponds exactly with the early time limit of
the on-mass-shell heavy quark (i.e. the static string solution at early times, Eq.(4.121)).

91For the physically relevant solution t ≥ 0, the early time limit t� β implies β > 0. Hence, k = t/β ≥ 0, and |k| = k.
92Eq.(5.70) agrees with Eq.(3.42) in Moerman et al.’s [52] if the the digamma function is rewritten in terms of the harmonic
numbers. Specifically, ψ(n) = H(n−1)− γE , where γE is the Euler-Mascheroni constant and n is a positive integer. It is worth
remarking that this form was avoid here since

(
1 + 1

r̃0

)
and

(
1− 1

r̃0

)
are not necessarily positive integers.
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(II) Asymptotic Late Time Dynamics

The behaviour of s2(t), Eq.(5.47), at asymptotically late times is considered. Defining two dimensionless
quantities

u :=
β

t
=

1

k
and z := ωt , (5.73)

the late time dynamics of s2(t) can be examined. At asymptotically late times t� β, or equivalently u� 1.
The integral Eq.(5.47) can then be rewritten

s2(t) =
β2

4π2
√
λ

∫ ∞
0

dz

z

1

ezu − 1

∣∣fz/t (σf − β/u)− fz/t(σf )eiz
∣∣2 . (5.74)

Using Eqs.(4.83, 4.85, 4.90) to simplify the integrand, yields

∣∣fz/t (σf − β/u)− fz/t(σf )eiz
∣∣2

=
(
fz/t (σf − β/u)− fz/t(σf )eiz

) (
f ∗z/t (σf − β/u)− f ∗z/t(σf )eiz

)
= fz/t (σf − β/u) f∗z/t (σf − β/u)− fz/t (σf − β/u) f∗z/t(σf )e−iz − fz/t(σf )f∗z/t (σf − β/u) eiz

+ fz/t(σf )f∗z/t(σf )

(u�1)−→ 4 sin2(ωt) + O (β/t) ,

(5.75)

where the final line is written in terms of ω, β and t using Eq.(5.73). Further, it has also been recognised
that at asymptotically late times the test string’s falling endpoint is in the near-horizon region, therefore
r ≈ rH . Substituting Eq.(5.75) into Eq.(5.74), yields

s2(t)
∣∣
t�β =

β2

π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
sin2(ωt) ≡ s2

small(t) . (5.76)

Therefore, the late time dynamics of an arbitrary virtuality light quark in a thermal plasma is diffusive
s2
small(t) ∼ t, and the diffusion coefficient is given by Eq.(5.61). This statement can be made due to a key
insight of Moerman et al. [52] – that the integral in Eq.(5.76) is identical to s2

small(t), the string falling
endpoint’s mean-squared transverse displacement in the limit of small virtualities (see subsection (5.2.2.1)).
This allows them to conclude that the behaviour of arbitrary virtuality quarks at asymptotically late times
(i.e. in the near-horizon region) is encoded in the small virtuality case. This is intuitive, since the length of
the Limp Noodle is arbitrarily short at asymptotically late times93. Since s2

small(t; d) can be solved for any
dimensions d ≥ 3 in AdSd-Schwarzschild, the late time behaviour (and therefore the diffusion coefficient)
of Limp Noodles with arbitrary length (equivalently, light quarks of arbitrary virtuality) in any number
of transverse spatial dimensions are able to be determined. This generalisation to AdSd-Schwarzschild is
presented in the following subsection.

5.3 Generalising to AdSd-Schwarzschild
To determine s2

small(t; d) the AdSd-Schwarzschild metric (Eq.(4.33)) is examined in the near-horizon limit94,
which surmounts to letting r = (1+ ε̃)rH , where (0 < ε ≤ ε̃� 1) and series expanding each term individually
around ε̃ = 0.

93Comparing Eq.(5.50) with Eq.(A.56) the limit of small virtualities appears to be equivalent to the near-horizon limit.
94As discussed in subsection (2.1), ‘dropping the 1’ from the function H(r) in the AdSd × Sd metric corresponds to being in the
near-horizon region (or in the ‘deep-throat’) of AdSd×Sd spacetime – see figure (1), page 5. Here, a further limit is considered
– letting r = (1 + ε̃)rH and studying the near-horizon geometry of the black-brane metric – which is the near-horizon limit
refered to in this subsection.
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Setting r = (1 + ε̃)rH , the AdSd-Schwarzschild metric Eq.(4.33) becomes

ds2
d =

r2
H

l2
(1 + ε̃)2 d ~X2

I −
r2
H

l2
(1 + ε̃)2

(
1−

( 1

1 + ε̃

)d−1
)
dt2 +

l2

(1 + ε̃)2

1

1− (1/(1 + ε̃))
d−1

dε̃2 , (5.77)

where each term is now able to be expanded in ε̃ (around ε̃ = 0). Specifically95,

r2
H

l2
(1 + ε̃)2 d ~X2

I =

(
r2
H

l2
+

2r2
H ε̃

l2
+
r2
H ε̃

2

l2

)
d ~X2

I , (5.78)

r2
H

l2
(1 + ε̃)2

(
1−

( 1

1 + ε̃

)d−1
)
dt2 −→

(
− (d− 1)r2

H ε̃

l2
+

(
d2 − 5d+ 4

)
r2
H ε̃

2

2l2
+ O (ε̃)

3

)
dt2 , (5.79)

l2

(1 + ε̃)2

1

1− (1/(1 + ε̃))
d−1

dε̃2 −→

(
l2

(d− 1)ε̃
+

(d− 4)l2

2(d− 1)
+

(
d2 − 14d+ 36

)
l2 ε̃

12(d− 1)
+ O (ε̃)

2

)
dε̃2 . (5.80)

The question now arises as how to truncate the series expansions (Eqs.(5.78)-(5.80)), such that the dt2, d ~X2
I

and dε̃2 terms in the metric are all to the same O(ε̃). To help clarify this task of consistent truncation,
there are actually only two options available:

(i) assume dt2 ∼ O(ε̃)0 and d ~X2
I ∼ O(ε̃)0, such that the AdSd-Schwarzschild metric becomes

ds2
d =

(
r2
H

l2
+

2r2
H ε̃

l2

)
d ~X2

I −
(d− 1)r2

H ε̃

l2
dt2 +

l2

(d− 1)ε̃
dε̃2 + O (ε̃)

2
, (5.81)

(ii) or, assume dt2 ∼ O(ε̃)0 and d ~X2
I ∼ O(ε̃), such that the AdSd-Schwarzschild metric becomes

ds2
d =

r2
H

l2
d ~X2

I −
(d− 1)r2

H ε̃

l2
dt2 +

l2

(d− 1)ε̃
dε̃2 + O (ε̃)

2
. (5.82)

These are the only options, since if higher order terms in the dt2 or dε̃2 series are included, the different signs
in Eqs.(5.79, 5.80) will result in a metric which is not conformally flat in (t, r∗) coordinates. The leading
order metric includes only the first term in the dε̃2 series expansion (Eq.(5.80)), therefore – to be consistent –
all terms in the leading order metric must be of O(ε̃). One of the ramifications of this is that it can not be as-
sumed that d ~XI ∼ O(ε̃) (or higher) at leading order, since the d ~X2

I term in the metric would then disappear.

To decide between options (i) or (ii), establish which option ensures that t, ~XI , ε̃ are on equal footing, and
that the dt, d ~XI , dε̃ terms scale the same way as ε̃→ λ ε̃. This will ensure the resulting near-horizon AdSd-
Schwarzschild metric has directions which encode transverse fluctuations96. For option (ii), considering the
scaling ε̃→ λ ε̃, the dε̃2 term in Eq.(5.82) scales as

l2

(d− 1)ε̃
dε̃2 → λ

l2

(d− 1)ε̃
dε̃2 .

Under the same transformation, in order for the dt2 term in Eq.(5.82) to scale as

−(d− 1)r2
H ε̃

l2
dt2 → λ

−(d− 1)r2
H ε̃

l2
dt2 ,

95In Eq.(5.79), all terms greater than O (ε̃)2 disappear when d = 3.
96It is clear that the near-horizon AdSd-Schwarzschild metric needs to have transverse directions since these are present in
the near-horizon AdS3-Schwarzschild metric (which was found directly from inverting the tortoise coordinate in d = 3, and
calculating the transverse string equations of motion without series expanding the parameters – see subsection (5.2)).
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the temporal variable needs to scale like t→ t. Similarly, in order for the d ~X2
I term in Eq.(5.82) to scale as

r2
H

l2
d ~X2

I → λ
r2
H

l2
d ~X2

I ,

the transverse variable needs to scale like ~XI →
√
λ ~XI

97. A consistent way to transform t and ~XI , such
that the dt, d ~XI , dε̃ terms in the AdSd-Schwarzschild metric scale the same way under the transformation
ε̃→ λ ε̃, can not be found for option (i). This strongly suggests that option (ii) is the correct way to truncate
the near-horizon AdSd-Schwarzschild metric.

Intuitive arguments aside, a rigorous mathematical approach to proving dt2 ∼ O(ε̃)0 and d ~X2
I ∼ O(ε̃)

can be applied in the d = 3 case. Since in AdS3-Schwarzschild the tortoise coordinate is invertible, the
transverse string equations of motion and its solution can be exactly found. The equations of motion and
its solution can be series expanded in ε̃ in the near-horizon region. Order by order these should match
with the equations of motion and its solution derived from the near-horizon AdS3-Schwarzschild (found
by expanding the metric in ε̃ and assuming dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃))98. If this method of matching
terms proves to be consistent, the order of ε̃ of the temporal and transverse directions will be known, and
this remains true for a general number of dimensions, d. The near-horizon AdSd-Schwarzschild metric will,
therefore, also be correctly known. The remainder of the subsection will follow the standard method of
finding the equations of motion for the transverse fluctuations, its solution, the string falling endpoint’s
mean-squared transverse displacement s2(t), and – finally – the diffusion coefficient for the light quark in
AdSd-Schwarzschild.

5.3.1 Expanding the AdS3-Schwarzschild Transverse Equations of Motion and its Solution
in the Near-Horizon Region

The AdS3-Schwarzschild metric, the resulting transverse equation of motion, and its solution are given by
Eqs.(4.41, 4.74, 4.76) respectively99. In the near-horizon region (which corresponds to setting r = (1+ ε̃)rH),
Eq.(4.41) becomes

ds2
3 = −r

2
H

l2
ε̃ (2 + ε̃) dt2 +

r2
H

l2
(1 + ε̃2) dx2 +

l2

ε̃ (2 + ε̃)
dε̃2 , (5.83)

which is equivalent to Eq.(5.77) when d = 3; Eq.(4.74) becomes

0 = − ∂2
tX(t, ε̃) +

r2
H

l4
ε̃ (2 + ε̃)

(1 + ε̃)2
∂ε̃
(
ε̃ (1 + ε̃)2(2 + ε̃) ∂ε̃X(t, ε̃)

)
= − ∂2

tXreg(t, ε̃) +
(ε̃+ 2)

4l4(ε̃+ 1)

[
− l2ω

(
l2ω(ε̃+ 1)(ε̃+ 2)− 2irH ε̃(3ε̃+ 5)

)
Xreg(t, ε̃)

+ 4rH ε̃
(
il2ω(ε̃+ 1)(ε̃+ 2) + 4rH ε̃(ε̃+ 2) + 2rH

)
∂ε̃Xreg(t, ε̃) + 4r2

H ε̃
2(ε̃+ 1)(ε̃+ 2)∂2

ε̃Xreg(t, ε̃)
]
,

(5.84)

where r = (1 + ε̃)rH and ∂ε̃ = rH∂r are used in the first line; and Eq.(4.76) becomes

X(t, ε̃) =

(
ε̃

ε̃+ 2

) il2ω
2rH i l2ω + rH ε̃+ rH

(ε̃+ 1) (rH + i l2ω)
e−iωt =: ε̃−

il2ω
2rH Xreg(t, ε̃) , (5.85)

where fω(r) = f
(+)
ω (r) (which is defined in Eq.(4.80)), and the regular part of the solution is given by

Xreg(t, ε̃). The regular equation of motion (Eq.(5.84)) can now be series expanded in ε̃ (around ε̃ = 0).

97Accepting that t and ~XI scale differently isn’t far-fetched considering this is the near-horizon region of the black-brane.
98This is done in detail Mathematica Notebook [c] (NearHorizonAdSd.nb) – see appendix (A.7) for access.
99The full solution to the transverse equation of motion is given by Eq.(4.85), where the constant Bω is defined in Eq.(4.90) and
the modes f (±)

ω (r) are given in Eq.(4.80). The linearly independent solutions f (+)
ω (r) or f (−)

ω (r) are sufficient to work with;
since, if an ODE is solved by f (+)

ω (r) or f (−)
ω (r), it will also be solved by the superposition of those solutions, fω(r). Therefore,

in order to simplify the algebra, take fω(r) = f
(+)
ω (r) (equivalently fω(r) = f

(−)
ω (r) could have been chosen).
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However, in order to perform this expansion, an ansatz for the expansion of Xreg(t, ε̃) is required. Up to
O(ε̃)2, the simple ansatz Xreg(t, ε̃) = x0(t) + ε̃ x1(t) + ε̃2 x2(t) can be used. The regular equation of motion
then becomes

0 =
(
−x′′0(t)− ω2x0(t)

)
+ ε̃

(
ω
(
−l2ω + 5irH

)
l2

x0(t) +

(
2rH + il2ω

)2
l4

x1(t)− x′′1(t)

)

+ ε̃2

(
−
ω
(
l2ω − 2irH

)
4l2

x0(t) +

(
−l4ω2 + 9il2rHω + 14r2

H

)
l4

x1(t) +

(
4rH + il2ω

)2
l4

x2(t)− x′′2(t)

)
+O(ε̃)3,

(5.86)

where x′′(t) = d2x/dt2. Series expanding the regular part of the solution (Eq.(5.85)) in ε̃ (around ε̃ = 0),
yields

Xreg(t, ε̃) = e−itω 2−
il2ω
2rH

(
1−

il2ω
(
l2ω − 5irH

)
4 rH (l2ω − irH)

ε̃−
l2ω

(
l4ω2 − 11il2rHω − 34r2

H

)
32 r2

H (l2ω − irH)
ε̃2 +O(ε̃)3

)

=: x0(t) + ε̃ x1(t) + ε̃2 x2(t) +O(ε̃)3 .

(5.87)

As a consistency check, notice that the solution Eq.(5.87) solves the transverse equation of motion Eq.(5.86)
at each respective order of ε̃.

5.3.2 Expanding the AdS3-Schwarzschild Metric in the Near-Horizon Region

The transverse equation of motion and its solution which have been derived from the AdS3-Schwarzschild
metric and then series expanded to yield the near-horizon limit (Eqs.(5.86, 5.87)) should match exactly with
the transverse equation of motion and its solution derived from the series expanded, near-horizon AdS3-
Schwarzschild metric. Going on physical intuition, it seems like a good starting point would be to assume
dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃) and check if the transverse equation of motion and its solution derived from
expanding this metric in the near-horizon limit match with those found in the previous subsection. To this
end, assuming dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃) results in an AdS3-Schwarzschild metric

ds2
3 =

r2
H

l2
dx2 − 2r2

H ε̃

l2
dt2 +

l2

2ε̃
dε̃2 + O (ε̃)

2
, (5.88)

where Eq.(5.82) for d = 3 has been used. The near-horizon tortoise coordinate, defined by setting r =
(1 + ε̃)rH in the definition of the tortoise coordinate Eq.(4.38), can also be expanded and truncated around
ε̃ = 0. To leading order it is sufficient to take100

ε̃∗ :=
l2

2 r2
H

ln(ε̃) , (5.89)

where r∗ = rH ε̃∗, and the number of dimensions d = 3 has been set posthumously. Barring an integration
constant of O(ε̃)0 (specifically −l2/(2rH) ln(2)), Eq.(5.89) agrees with expanding and truncating Eq.(4.39)
after setting r = (1 + ε̃)rH

101. Inverting and calculating the differential yields

ε̃ = e
2 r2H
l2

ε̃∗ , and dε̃ =
2 r2

H

l2
e

2 r2H
l2

ε̃∗ dε̃∗ . (5.90)

Eqs.(5.89, 5.90) are used to transform the expanded and truncated metric into (t, ε̃∗) coordinates. The
metric Eq.(5.88) becomes

ds2
3 = 2

r2
H

l2
e

2 r2H
l2

ε̃∗
(
−dt2 + r2

H dε̃
2
∗
)

+
r2
H

l2
dx2

= 2
r2
H

l2
e

2 rH r∗
l2

(
−dt2 + dr2

∗
)

+
r2
H

l2
dx2 ,

(5.91)

100It’s proven that the leading order tortoise coordinate is given by Eq.(5.89) in appendix (A.6).
101See Mathematica Notebook [c] (NearHorizonAdSd.nb) for details: access in appendix (A.7).
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where the final line is a conformally flat description of near-horizon AdS3-Schwarzschild in (t, r∗) coordinates.
It follows from the near-horizon definition r = (1 + ε̃)rH , and Eqs.(5.89, 5.90) that

r = rH

(
1 + e

2 rH r∗
l2

)
, and r∗ =

l2

2 rH
ln

(
r

rH
− 1

)
. (5.92)

As discussed in subsection (5.1.3), in the conformally flat (t, r∗) coordinate system the boundary conditions
for the Limp Noodle in AdS3-Schwarzschild are given by Eqs.(4.46, 4.48), which are respectively analogous
to the boundary conditions for the Limp Noodle in R1+1, Eqs.(4.25, 4.26). Hence, the leading order solution
for the Limp Noodle in AdS3-Schwarzschild in conformal (t, r∗) coordinates can be written down (Eq.(5.39)).
Converting then to (t, r) coordinates, the string solution for the d = 3 Limp Noodle in the near-horizon
limit at leading order is given by

Xµ
AdS3-Sch(t, σ) =

t,
rH

(
1 + e

2 rH
l2

(rs∗ +σ)
)
, if (t, σ) ∈ M1

rH

(
1 + e

2 rH
l2

(rs∗ +σf − t)
)
, if (t, σ) ∈ M2

 , 0

µ

, (5.93)

where Eq.(5.92) is used. The position of the fixed string endpoint attached to the stretched horizon is given
by

rs∗ =
l2

2 rH
ln
( rs
rH
− 1

)
or, equivalently ε̃s∗ =

l2

2 r2
H

ln(ε) , (5.94)

since the stretched horizon is defined as rs = (1 + ε)rH , where 0 < ε ≤ ε̃ � 1. The length of the string in
tortoise coordinates is given by

σf =
l2

2 rH
ln
(rs + `0

rH
− 1

)
− rs∗ or, equivalently σf =

l2

2 rH
ln

(
ε+

`0
rH

)
− rH ε̃s∗ , (5.95)

and theM1 andM2 parameter space regions are still given by Eq.(5.33). Using the definition of the near-
horizon limit (r = (1 + ε̃)rH) and r∗ = rH ε̃∗, the leading order string solution Eq.(5.93) can be converted
into (t, ε̃) coordinates. Specifically,

Xµ
AdS3-Sch(t, σ) =

t,
e

2 rH
l2

(rH ε̃s∗ +σ), if (t, σ) ∈ M1

e
2 rH
l2

(rH ε̃s∗ +σf − t), if (t, σ) ∈ M2

 , 0

µ

. (5.96)

Therefore, the identification ε̃ = e
2 rH
l2

(rH ε̃s∗ +σ) is made. The equation of motion for the transverse
fluctuations in the near-horizon limit of AdS3-Schwarzschild can be derived from Eq.(4.69),

0 = ∂a

(
− 1

2πα′
(√
−g gabGIJ

) ∣∣
Xµ0
∂bX

J

)

= ∂a

((√
−g gab r

2
H

l2

) ∣∣∣∣
Xµ0

∂bX(t, ε̃)

)
,

(5.97)

where the spacetime metric in the near-horizon limit Gµν is given explicitly by

Gµν =


− 2 r2H ε̃

l2 0 0

0 l2

2 ε̃ 0

0 0
r2H
l2

 , (5.98)
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where µ, ν index over the directions (t, ε̃, x). The explicit entries of the induced worldsheet metric are
calculated from Eq.(4.2)102. In the near-horizon limit, for d = 3, the leading order induced metric in (t, ε̃)
coordinates is given by

gab
∣∣
Xµ0

:=

gtt gtσ

gσt gσσ

 ∣∣∣∣∣
Xµ0

=

Gtt 0

0 ε̃′2Gε̃ε̃

 =

− 2 r2H ε̃
l2 0

0 ε̃′2 l2

2 ε̃

 , (5.99)

where Eq.(5.98) is used, and ε̃′ = ∂σ ε̃. Hence, its inverse is given by

gab
∣∣
Xµ0

:=

gtt gtσ

gσt gσσ

 ∣∣∣∣∣
Xµ0

=
1

det
(
gab|Xµ0

)
ε̃′2Gε̃ε̃ 0

0 Gtt

 =

− l2

2 r2H ε̃
0

0 2 ε̃
l2 ε̃′2

 , (5.100)

where det
(
gab|Xµ0

)
is calculated from Eq.(5.99),

g|Xµ0 ≡ det
(
gab|Xµ0

)
= ε̃′2Gε̃ε̃Gtt =

(
ε̃′2

l2

2 ε̃

)(
− 2 r2

H

l2
ε̃

)
= −r2

H ε̃
′2 . (5.101)

Expanding the indices of Eq.(5.97) using Eqs.(5.99)-(5.101), the transverse equation of motion become

0 = ∂σ

((√
−g gσσ r

2
H

l2

)∣∣∣∣
Xµ0

∂σX(t, σ)

)
+ ∂t

((√
−g gtt r

2
H

l2

)∣∣∣∣
Xµ0

∂tX(t, σ)

)

= ∂σ

(
rH ε̃

′
(

2 ε̃

l2 ε̃′2

)
r2
H

l2
∂σX(t, σ)

)
+ ∂t

(
rH ε̃

′
(
− l2

2 r2
H ε̃

)
r2
H

l2
∂tX(t, σ)

)

= − ∂2
tX(t, σ) +

4 r2
H

l4
ε̃

1

∂σ ε̃
∂σ

(
1

∂σ ε̃
ε̃ ∂σX(t, σ)

)

= − ∂2
tX(t, ε̃) +

4 r2
H

l4
ε̃ ∂ε̃
(
ε̃ ∂ε̃X(t, ε̃)

)
.

(5.102)

where the last line is written completely in terms of near-horizon spacetime coordinates (t, ε̃) by differenti-
ating the identification ε̃ = e

2 rH
l2

(rH ε̃s∗ +σ),

dε̃ = 2
rH
l2
e2

rH
l2

(
rH ε̃s∗ +σ

)
dσ

⇒ ∂σ = 2
rH
l2
e2

rH
l2

(
rH ε̃s∗ +σ

)
∂ε̃

⇒ ∂σ = 2
rH
l2
ε̃ ∂ε̃ .

(5.103)

In terms of Xreg(t, ε̃) the equation of motion is given by

0 = −∂2
tXreg(t, ε̃) +

4rH ε̃
(
rH ε̃ ∂

2
ε̃Xreg(t, ε̃) +

(
rH + il2ω

)
∂ε̃Xreg(t, ε̃)

)
l4

− ω2Xreg(t, ε̃) , (5.104)

where the definition of the regular solution in Eq.(5.85) has been used. In order to check whether, at
leading order, the regular equation of motion agrees with the series expanded regular equation of motion
(Eq.(5.86)), the leading order ansatz Xreg(t, ε̃) = x0(t) should be used. The leading order contribution to
Eq.(5.104) then becomes

102This calculation is similar to Eq.(A.34) where the induced metric is calculated explicitly in (t, r) coordinates (see appendix
(A.3)).
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0 = −x′′0(t)− ω2x0(t) , (5.105)

which agrees exactly with the leading order contribution of Eq.(5.86). This proves that the expanded
near-horizon metric is equivalent to the near-horizon metric at leading order in AdS3-Schwarzschild. The
expanded near-horizon metric given in Eq.(5.88) is therefore correct, and dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃). As
a final check, the calculations in this subsection are repeated assuming dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃)0. The
equation of motion found is,

0 = − ∂2
t X(t, ε̃) +

4 r2
H

l4
ε̃

(1 + 2 ε̃)
∂ε̃
(
ε̃ (1 + 2 ε̃) ∂ε̃X(t, ε̃)

)
= − ∂2

tXreg(t, ε̃) +
4r2
H

l4
ε̃2∂2

ε̃Xreg(t, ε̃) +
4rH ε̃ ∂ε̃Xreg(t, ε̃)

(
il2ω(2ε̃+ 1) + 4rH ε̃+ rH

)
l4(2ε̃+ 1)

−
ωXreg(t, ε̃)

(
l2ω(2ε̃+ 1)− 4irH ε̃

)
l2(2ε̃+ 1)

LO−→ −x′′0(t) +

(
−ω +

4irH
l2

ε̃

(2ε̃+ 1)

)
ωx0(t) ,

(5.106)

which does not match the leading order contribution of Eq.(5.86).

5.3.3 The Diffusion Constant in AdSd-Schwarzschild

In the previous two subsections it was proven that in order for a near-horizon expansion of the metric to
be consistent, the leading order metric is taken to O(ε̃) – where dt2 ∼ O(ε̃)0 and dx2 ∼ O(ε̃) (equivalently
t ∼ O(ε̃)0 and x ∼ O(

√
ε̃)). Generalising to d dimensions this holds true, where XI (instead of x) denotes

the transverse directions in AdSd-Schwarzschild. Hence the leading order, near-horizon AdSd-Schwarzschild
metric is given by Eq.(5.82).

From the near-horizon metric, which is conformal in (t, r∗) coordinates, the leading order string solution
followed by the transverse equations of motion can be found. A similar method to subsection (5.3.2) is
followed. The near-horizon tortoise coordinate, defined by setting r = (1 + ε̃)rH in the definition of the
tortoise coordinate Eq.(4.38), can be expanded and truncated around ε̃ = 0. To leading order it is sufficient
to take103

ε̃∗ :=
l2

r2
H

ln(ε̃)

(d− 1)
, (5.107)

where r∗ = rH ε̃∗. Inverting and calculating the differential yields

ε̃ = e
r2H
l2

(d−1) ε̃∗ , and dε̃ =
r2
H

l2
(d− 1) e

r2H
l2

(d−1) ε̃∗ dε̃∗ . (5.108)

The definition of the near-horizon tortoise coordinate, its inverse and differential (Eqs.(5.107, 5.108)) can
be used to convert the metric Eq.(5.82) into (t, ε̃∗) coordinates

ds2
d =

r2
H

l2
(d− 1) e

r2H
l2

(d−1) ε̃∗
(
−dt2 + r2

H dε̃
2
∗
)

+
r2
H

l2
d ~X2

I

=
r2
H

l2
(d− 1) e

rH r∗
l2

(d−1)
(
−dt2 + dr2

∗
)

+
r2
H

l2
d ~X2

I .

(5.109)

103It’s proven that the leading order tortoise coordinate is given by Eq.(5.107) in appendix (A.6).
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From the final line in Eq.(5.109) notice that the metric – like the near-horizon AdS3-Schwarzschild metric
(Eq.(5.91)) – is conformal in (t, r∗) coordinates. It follows from the near-horizon definition r = (1 + ε̃)rH ,
and Eqs.(5.107, 5.108) that

r = rH

(
1 + e

rH r∗
l2

(d−1)
)
, and r∗ =

l2

(d− 1) rH
ln

(
r

rH
− 1

)
, (5.110)

which reduces down to Eq.(5.92) for d = 3. From the metric Eq.(5.109) the method laid out in subsection
(5.1.3) can be followed in order to write down the leading order solution for the Limp Noodle in AdSd-
Schwarzschild in conformal (t, r∗) coordinates, which is given by Eq.(5.39)104. Converting then to (t, r)
coordinates, the string solution for the Limp Noodle in the near-horizon limit at leading order is given by

Xµ
AdSd-Sch(t, σ) =

t,
rH

(
1 + e

rH
l2

(d−1) (rs∗ +σ)
)
, if (t, σ) ∈ M1

rH

(
1 + e

rH
l2

(d−1) (rs∗ +σf − t)
)
, if (t, σ) ∈ M2

 , 0

µ

, (5.111)

where Eq.(5.110) is used105. The position of the fixed string endpoint attached to the stretched horizon is
given by

rs∗ =
l2

(d− 1) rH
ln
( rs
rH
− 1

)
or, equivalently ε̃s∗ =

l2

(d− 1) rH
ln(ε) , (5.112)

since the stretched horizon is defined as rs = (1 + ε)rH , where 0 < ε ≤ ε̃ � 1. The length of the string in
tortoise coordinates is given by

σf =
l2

(d− 1) rH
ln
(rs + `0

rH
− 1

)
− rs∗ or, equivalently σf =

l2

(d− 1) rH
ln

(
ε+

`0
rH

)
− rH ε̃s∗ ,

(5.113)

and theM1 andM2 parameter space regions are still given by Eq.(5.33). Using the definition of the near-
horizon limit (r = (1 + ε̃)rH) and r∗ = rH ε̃∗, the leading order string solution Eq.(5.111) can be converted
into (t, ε̃) coordinates. Specifically,

Xµ
AdSd-Sch(t, σ) =

t,
e

rH
l2

(d−1) (rH ε̃s∗ +σ), if (t, σ) ∈ M1

e
rH
l2

(d−1) (rH ε̃s∗ +σf − t), if (t, σ) ∈ M2

 , 0

µ

, (5.114)

where ε̃s∗ and σf are defined in Eqs.(5.112, 5.113). Therefore, the identification ε̃ = e
rH
l2

(d−1) (rH ε̃s∗ +σ)

is made. The equations of motion for the transverse fluctuations in the near-horizon limit of AdSd-
Schwarzschild can be derived from Eq.(4.66), and are equivalent to Eq.(5.97) with the generalised spacetime
metric in the near-horizon limit (Gµν) given by

Gµν =



− r
2
H

l2 (d− 1) ε̃ 0 0 0 0 0

0 l2

(d−1)
1
ε̃ 0 0 0 0

0 0
r2H
l2 0 0 0

0 0 0
r2H
l2

. . . 0

0 0 0
. . . . . . 0

0 0 0 0 0
r2H
l2


, (5.115)

104This equation – derived from the worldsheet parameter space partitioning of the test string in R1,1, Eq.(5.34) – is independent
of d, the number of spacetime dimensions.

105It will be much harder to find next-to-leading order corrections to the string solution in the near-horizon limit, since if the
near-horizon metric includes higher order terms (O(ε̃)2 terms) it will no longer be conformal in (t, r∗) coordinates.
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where µ, ν index over (t, r, 2, ... , d− 1). The explicit entries of the induced worldsheet metric are calculated
from Eq.(4.2). In the near-horizon limit, the leading order induced metric in (t, ε̃) coordinates is given by

gab
∣∣
Xµ0

:=

gtt gtσ

gσt gσσ

 ∣∣∣∣∣
Xµ0

=

Gtt 0

0 ε̃′2Gε̃ε̃

 =

− r2Hl2 (d− 1) ε̃ 0

0 ε̃′2 l2

(d−1)
1
ε̃

 , (5.116)

where Eq.(5.115) is used, and ε̃′ = ∂σ ε̃. Hence, its inverse is given by
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 , (5.117)

where det
(
gab|Xµ0

)
is calculated from Eq.(5.116),

g|Xµ0 ≡ det
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)
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′2 . (5.118)

Expanding the indices of Eq.(5.97) using Eqs.(5.116)-(5.118), the transverse equation of motion become

0 = ∂σ

((√
−g gσσ r

2
H

l2

)∣∣∣∣
Xµ0

∂σX
I(t, σ)

)
+ ∂t

((√
−g gtt r

2
H

l2

)∣∣∣∣
Xµ0

∂tX
I(t, σ)

)

= ∂σ

(
rH ε̃

′
(

(d− 1) ε̃

l2 ε̃′2

)
r2
H

l2
∂σX

I(t, σ)

)
+ ∂t

(
rH ε̃

′
(
− l2

(d− 1)r2
H

1

ε̃

)
r2
H

l2
∂tX

I(t, σ)

)

= − ∂2
tX

I(t, σ) +
r2
H

l4
(d− 1)2 ε̃

1

∂σ ε̃
∂σ

(
1

∂σ ε̃
ε̃ ∂σX

I(t, σ)

)

= − ∂2
tX

I(t, ε̃) +
r2
H

l4
(d− 1)2 ε̃ ∂ε̃

(
ε̃ ∂ε̃X

I(t, ε̃)
)
,

(5.119)

where XI denotes the transverse direction (I ∈ (2, 3, ... , d− 1)); and the last line is written completely in
terms of near-horizon spacetime coordinates (t, ε̃) by differentiating the identification ε̃ = e

rH
l2

(d−1) (rH ε̃s∗ +σ),

dε̃ = (d− 1)
rH
l2
e
rH
l2

(d−1)
(
rH ε̃s∗ +σ

)
dσ
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(d−1)
(
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)
∂ε̃
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rH
l2
ε̃ ∂ε̃ .

(5.120)

Eq.(5.120) can also be used to convert the equations of motion Eq.(5.119) to parameter space coordinates
(t, σ),

0 = − ∂2
t X

I(t, σ) +
r2
H

l4
(d− 1)2 ε̃

l2

(d− 1) rH

1

ε̃
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(
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ε̃
∂σX

I(t, σ)

)
= − ∂2

t X
I(t, σ) + ∂2

σX
I(t, σ) .

(5.121)

The near-horizon string equations of motion for the transverse fluctuations on the Limp Noodle is given
by wave equation. Remember that the small virtuality limit of the d = 3 Limp Noodle also yielded
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the wave equation as the transverse equation of motion (Eq.(5.51))106. Since this is true, repeating the
calculations laid out in subsection (5.2.2.1) is sufficient to calculate s2(t; d). The only change is that β scales
with the number of spacetime dimensions, so Eq.(5.56) needs to be adapted by adding in the appropriate
dimensionally dependent factor. In order to calculate this, notice that β enters the calculation of s2

small(t) in
subsection (5.2.2.1) through the use of the normalization constant Aω. For d ≥ 3, Eq.(4.100) is generalised

Aω(d) :=
l

rH

√
πα′

ω
=

(d− 1)β

4
√
πω λ1/4

≡ (d− 1)

2
Aω , (5.122)

where the second equality follows from using the definition of the AdS radius of curvature l (Eq.(4.64)) and
the Hawking temperature (Eq.(4.35)). Using the generalised normalization constant Aω(d), the expectation
value of the position of the boundary endpoint at two different times (Eq.(5.43)) becomes107

〈:X̂end(t1; d)X̂end(t2; d):〉 =
(d− 1)2β2

16π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1
Re
(
fω(σf − t1)f ∗ω (σf − t2)e−iω(t1−t2)

)
≡ (d− 1)2

4
〈:X̂end(t1)X̂end(t2):〉 ,

(5.123)

while the string falling endpoint’s mean-squared transverse displacement, Eq.(5.47), becomes

s2(t; d) =
(d− 1)2β2

16π2
√
λ

∫ ∞
0

dω

ω

1

eβω − 1

∣∣fω(σf − t)− fω(σf )eiωt
∣∣2

≡ (d− 1)2

4
s2(t) ,

(5.124)

due to the factors of AωAω′ appearing in the calculations of both 〈:X̂end(t1; d)X̂end(t2; d):〉 and s2(t; d).

In subsection (5.2.2.1), the general solution to the wave equation, fω(σ), is given by Eqs.(5.52)-(5.55). In
order to calculate the falling string endpoint’s mean-squared transverse displacement in the small virtuality
limit, Eq.(5.55) is substituted into Eq.(5.124). Specifically,

s2(t; d) =
(d− 1)2β2

16π2
√
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(
2πt
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))
,

(5.125)

where Eq.(5.56) is used in the third line, and Eq.(5.58) in the final line. In order to calculate the diffusion
coefficient, the late time dynamics of Eq.(5.125) must be explored. Expanding in powers of 1/k = β/t yields

106The solution to Eq.(5.121) is therefore given by Eq.(5.52), or alternatively by f (±)
ω (ε̃) = ε̃

± 1
(d−1)

il2ω
rH , where the identification

ε̃ = e
rH
l2

(d−1) (rH ε̃s∗ +σ) is used to convert from parameter space coordinates (t, σ) to near-horizon spacetime coordinates
(t, ε̃). Notice when f

(+)
ω (ε̃) is used as the solution (as in subsection (5.3.1)), f (−)

ω (ε̃) is used in the definition of Xreg(t, ε̃),
Eq.(5.85).

107Note that the Bose-Einstein distribution Eq.(4.102) does not carry any dimensional dependence.
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(5.126)

where the calculation steps in Eq.(5.60) have been followed closely. Since s2(t; d) ∼ t, the late time dynamics
exhibit diffusive behaviour. From Eq.(3.21) it is expected that s2

small(t) = 2D t at late times, where D is
the diffusion coefficient. Comparing this to Eq.(5.126) it is easy to see that the diffusion coefficient is given
by

DAdSd
LQ (d) =

(d− 1)2β

16π
√
λ

. (5.127)

For d = 3, this reduces down to Eq.(5.61) as expected.

Moerman et al. in [52] present an expression for the light quark diffusion coefficient in d dimensions which
agrees with Eq.(5.127). However, their method of expanding the near-horizon AdSd-Schwarzschild metric
(described in subsection (3.3) of [52]) is inconsistent. The near-horizon AdSd-Schwarzschild metric given in
Eq.(3.48) of [52] is dimensionally incorrect108,109. Using the near-horizon tortoise coordinate Eq.(5.107) (no
attempt is made to explain how the order of truncation is consistent with the leading order near-horizon
metric110), the metric in Eq.(3.48) of [52] is converted to (t, ε̃∗) coordinates, and found to be conformal in
this system111. Hence, the leading order string solution can be written down in (t, ε̃∗) coordinates, from
which Moerman et al. proceeded to finding the transverse equations of motion – this, coincidentally, being
the wave equation. Therefore, although there is agreement between the final results, Eq.(5.127) and the
diffusion coefficient in d dimensions derived by Moerman et al., the author concludes that the calculations
in this subsection arriving at Eq.(5.127), present the first complete, consistent derivation of the light quark
diffusion coefficient in d dimensions.

108Since r2
H , l2 dx2

d−2 and dt2 all go like Energy−1, and ε̃ (as well as dε̃2) are defined as dimensionless quantities; the first
term in the metric Eq.(3.48) of [52] goes like Energy−2, the second term also goes like Energy−2, but the third term is
dimensionless. In juxtaposition, all terms in the correct, leading order near-horizon AdSd-Schwarzschild metric given in this
subsection (Eq.(5.82)) consistently go like Energy−2.

109A note on terminology: ε in [52] corresponds to ε̃ in this dissertation.
110The paper [52] simply states "Expanding (and truncating) each term in the AdSd metric, Eq.(2.32), to lowest non-vanishing

order in ε". There does not appear to have been an attempt to examine if each term is consistently taken to the same order
of ε (ε̃ – see footnote 109).

111The correct near-horizon AdSd-Schwarzschild metric (Eq.(5.82)) is actually conformal in (t, r∗) coordinates (as shown in
Eq.(5.109)).
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6 Drag Force in AdS/CFT
Besides the test string set-ups depicted in figures (2) and (3) (see section (4), page 16, and section (5),
page 37, respectively), there are many other string set-ups – illuminating various aspects or properties
of the thermal plasma in the boundary theory – that could be considered. One such set-up is a trailing
string in AdS5-Schwarzschild which models an infinitely massive probe quark112 moving with a constant
velocity v in a N = 4 SYM thermal plasma113. This was considered by Gubser [22] and Herzog et al. [35]
independently in 2006, who aimed to approximately explain jet-quenching – the phenomenon whereby energy
loss is experienced by high-energy quarks travelling through the quark-gluon plasma114. The succeeding
subsection follows the calculations of [22, 35] in using the AdS/CFT correspondence to calculate the drag
force experienced by a massive probe quark in the N = 4 SYM thermal medium. The string set-up used is
depicted in figure (9). Further, in subsection (6.2), the set-up is generalised to AdSd-Schwarzschild.

Figure 9: A fundamental open string used as a probe in an AdS black hole background to model an infinitely
massive quark moving through a thermal plasma at a constant velocity v on the boundary. One endpoint of the

test string is attached to the boundary of anti-de Sitter spacetime at infinity (r =∞), from which the string hangs
down to a stretched horizon (rs = (1 + ε) rH where 0 < ε� 1) placed just above the Schwarzschild black hole

horizon. Left: A string which trails behind its boundary endpoint moving with velocity v in the X2 direction. This
is the physical solution. Energy flows from the boundary, down the string, and towards the horizon. Right: A

string which trails in front of its boundary endpoint moving with velocity v in the X2 direction. This solution is
unphysical. Energy would need to be flowing away from the horizon, up the string, and towards the boundary.

6.1 Test Strings in AdS5-Schwarzschild
Consider a static open string in AdS5-Schwarzschild, with one endpoint attached to the boundary at r =∞
and the other allowed to hang down towards the horizon. Since the string is infinitely long (which models
an infinitely massive quark in the boundary theory), the transverse fluctuations that the string experiences
due to the presence of the black hole horizon never reach the boundary, i.e. the infinitely massive quark
does not experience Brownian motion in the thermal medium. Regardless of its length, this test string is
still a classical relativistic string and, as such, is described by the standard Polyakov action (Eq.(4.1)) or
Nambu-Goto action (Eq.(4.53)). It is convenient to use the Nambu-Goto action here115.

112Due to its infinite mass such a quark would not undergo Brownian motion in thermal plasma.
113The constant velocity is measured with respect to the rest frame of the plasma.
114Around the same time, studies examining trailing strings in the AdS spacetime in order to investigate the dissipative and

diffusive behaviour of a massive quark moving through a field theory plasma were common (see [36–41]).
115The Nambu-Goto action given in Eq.(4.53) is defined in the String Frame. In the Einstein Frame, the Nambu-Goto action is

constructed with an added dilaton factor eφ/2,

SENG := −
1

2πα′

∫
M
d2σ eφ/2

√
−g ,

where g := det (gab) and the induced worldsheet metric gab is given by Eq.(4.2). In [22] the Einstein Frame is chosen for
the proceeding calculations. The phenomenologically relevant case of AdS5-Schwarzschild is considered. In this spacetime the
dilaton factor can be ignored, since eφ/2 = H(5−d)/4 (where H is the warping factor and eφ/2 disappears when d = 5). It is
worth a footnote to remark, however, that the Einstein Frame is related to the String Frame by a conformal rescaling of the
metric, and that the frames are considered interchangeable when describing the physics of massless modes on the string [109].
The calculations in this dissertation are in the String Frame.
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From Eq.(4.33), the AdS5-Schwarzschild metric is given by

ds2
5 =

r2

l2

(
−h(r) dt2 + d ~X2

I

)
+

l2

r2

dr2

h(r)
, where h(r) = 1−

(rH
r

)4

∈ [0, 1] (6.1)

is the blackening factor of the Schwarzschild black hole situated at the horizon; t ∈ [0,∞) is the temporal
coordinate; r ∈ [0,∞) is the radial coordinate; and the transverse spatial directions along which the D3-
brane is extended are denoted by ~XI =

(
X2, X3, X4

)
∈ R3. Further, l ∈ R+ is the curvature radius of AdSd

and Sd.

Following [22, 35], a gauge choice is made where τ = t and σ = r are the worldsheet coordinates. The target
spacetime metric Gµν – where µ, ν index over the spacetime directions (t, r, 2, 3, 4) – is given explicitly
in Eq.(A.32); and the induced worldsheet metric gab, defined in Eq.(4.2), takes the form Eq.(A.33). The
explicit entries of the metric gab, its inverse gab, and its determinant g := det(gab) are given by Eqs.(A.34,
A.35, A.36) respectively. Using the target spacetime metric Gµν and remembering the gauge choice τ = t
and σ = r, the determinant of the induced metric becomes

g = −
(

1 − 1

h(r)
Ẋ2
I +

r4

l4
h(r)X ′2I

)
, (6.2)

where Ẋ ≡ ∂τX = ∂tX and X ′ ≡ ∂σX = ∂rX (in both definitions the second equality follows from the
worldsheet gauge choice). Inputting Eq.(6.2), into the definition of the Nambu-Goto action Eq.(4.53) yields

SNG = − 1

2πα′

∫
M
d2σ

√
1 − 1

h
Ẋ2
I +

r4

l4
hX ′2I , (6.3)

where the notational adjustment h(r) ≡ h is used for brevity. The Lagrangian density, also defined in
Eq.(4.53), is therefore given by

L = −
√

1 − 1

h
Ẋ2
I +

r4

l4
hX ′2I . (6.4)

To proceed, consider movement of the test string with a constant velocity v in one of the transverse directions,
the X2 direction116. Following [22], an ansatz to describe the late-time behaviour of the string is made.
Specifically117,

X2(t, r) = vt + ξ(r) + o(t) , (6.5)

where, at late times, all other motions are damped out and the o(t) term disappears. The ansatz Eq.(6.5)
relies on the assumption that steady state behaviour of the string’s motion is achieved at late times. Sub-
stituting this ansatz into the Lagrangian density Eq.(6.4) – remembering that X2 is the only direction in
which the string is considered to move – yields

L = −

√
1− 1

h

[
∂

∂t
(vt+ ξ)

]2

+
r4

l4
h

[
∂

∂r
(vt+ ξ)

]2

= −
√

1− v2

h
+
r4

l4
h ξ′2 ,

(6.6)

where ξ(r) ≡ ξ is implied, and ξ′ = ∂rξ. In order to determine ξ(r), the Euler-Lagrange equations are
derived from the Lagrangian density (Eq.(6.6)), and are given by

116Due to a symmetry of anti-de Sitter spacetime all transverse directions are identical. Therefore any of the transverse directions
can be chosen – considering motion in either the X2, X3 or X4 directions would be equivalent.

117To clarify the notation: the mapping function for the second transverse direction will be denoted X2, while squaring this
mapping function (if necessary) will be denoted (X2)2.
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∂

∂t

∂L
∂ξ′
− ∂L
∂ ξ

= 0 , (6.7)

where the quantity πξ can be defined as

πξ :=
∂L

∂
(
∂r ξ

) . (6.8)

Since the Lagrangian density (Eq.(6.6)) does not depend on ξ (i.e. ∂L/∂ ξ = 0), the Euler-Lagrange
equations become

πξ :=
∂L
∂ ξ′

= C

= − r4

l4
h ξ′

(
1− v2

h
+
r4

l4
h ξ′2

)− 1
2

,

(6.9)

where Eq.(6.6) is used in the second line. Hence, the equation of motion of the string is πξ being a constant
of motion. Solving Eq.(6.9) yields a defining relation for ξ′(r). Mathematica’s Solve function is used118, to
find

ξ′(r) = ±πξ
l4

r4 h

√
h − v2

h − l4

r4π
2
ξ

. (6.10)

Finding ξ(r) will involve integrating Eq.(6.10) with respect to r. However, ξ(r) is required to be real
everywhere, and the square root in Eq.(6.10) is not necessarily always real. The only variable which can be
adjusted is πξ. Defining πξ such that (h − v2)/(h − l4

r4π
2
ξ ) is always positive (thereby ensuring the square

root is always real) is equivalent to setting the appropriate boundary conditions. Since h(r) ∈ [0, 1], at some
intermediate radius h = h∗ the numerator (h − v2) changes sign. In order for the square root to be real
everywhere the denominator must change sign at the same point, i.e. at h = h∗,

h − l4

r4
π2
ξ = h − v2 = 0 . (6.11)

Rearranging the first equality leaves

π2
ξ =

r4

l4
v2 . (6.12)

While the second equality in Eq.(6.11) is rearranged to

r4 =
r4
H

1− v2
. (6.13)

where the definition of h(r) (Eq.(6.1)) is used. Inputting Eq.(6.13) into Eq.(6.12) results in an appropriate
expression for πξ,

πξ = ± v√
1− v2

r2
H

l2
. (6.14)

Plugging this defining relation for πξ into Eq.(6.10) guarantees that the square root in Eq.(6.10) is always
positive, and ξ(r) is everywhere real. The (±) in Eq.(6.14) determines if the quark is moving in the (+) or
(−) X2 direction. Consider the case where πξ > 0 for the remainder of the calculation. Eq.(6.10) becomes,

118Mathematica is used to help simplify the algebra. See Mathematica Notebook [d] (DragForce.nb) for details on the calculations
presented in section (6): access in appendix (A.7).
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ξ′(r) = ± v r2
H l

2

r4 − r4
H

. (6.15)

An integrable expression for ξ′ has finally been found. Integrating Eq.(6.15) with respect to r yields119

ξ(r) = ∓ l2 v

2 rH

(
tan−1

(
r

rH

)
− ln(rH − r)

2
+

ln(r + rH)

2

)
,

= ∓ l2 v

2 rH

(
tan−1

(
r

rH

)
+ ln

√
r + rH
r − rH

)
,

(6.16)

where in the second line ln(−x) = ln(x) + i π for x > 0 is used and it is recognised that i π can be absorbed
into the integration constant, which (if the calculation was entirely rigorous) would be present in Eq.(6.16).
The function ξ(r) can take on two values: (i) for (ξ′(r) > 0, ξ(r) < 0) the string trails behind its boundary
endpoint which is moving with a velocity v in the (+) X2 direction, and (ii) for (ξ′(r) < 0, ξ(r) > 0) the
string trails in front of its boundary endpoint which is moving with a velocity v in the (+) X2 direction.
The ‘tail wagging the dog’ scenario depicted in (ii) is an unphysical solution [35]; however both of these
cases are depicted in figure (9), page 66.

Using the expression for ξ′(r) given in Eq.(6.15) the Lagrangian density (Eq.(6.6)) becomes

L = −
√

1− v2 . (6.17)

Since the definition of the Nambu-Goto action (Eq.(4.53)) implies L = −
√
−g, the determinant of the

induced metric becomes
g = −

(
1− v2

)
. (6.18)

To calculate the flow of momentum down the string dp2/dt, the canonical momentum densities Πa
µ(t, σ)

(Eq.(4.5)), and the string equations of motion (Eq.(4.19)) are needed. The conserved charges associated
with the momentum densities Πa

µ are defined [15, 96] for a general curve γ on the worldsheet, as

pγµ :=

∫
γ

dσb ε̃ab Πa
µ , (6.19)

where ε̃ab is the Levi-Civita symbol120, and gab is the induced metric on the worldsheet in curved spacetime
(Eq.(4.2)). Since the string moves only in the X2 direction by construction, the string’s transverse mo-
mentum densities are only non-zero in this direction. Using Eq.(6.19) the X2 component of the spacetime
momentum flowing over some general time interval I of length ∆t is

dp2

dt
∆t = pI2 =

∫
I
dtΠr

2 , (6.20)

where the gauge choice τ = t and σ = r is applied, and ε̃rt = +1 from the definition of the Levi-Civita symbol.
The radius at which the integral in Eq.(6.20) is evaluated does not matter, since the momentum densities
Πa
µ(t, σ) are conserved (Eq.(4.19)). For the physical solution where the string trails behind its boundary

endpoint (ξ′(r) > 0, ξ(r) < 0), the quantity dp2/dt is identified as the drag force and the orientation of

119Mathematica is used to easily integrate (see Mathematica Notebook [d]: DragForce.nb).
120The Levi-Civita symbol is defined in two dimensions as

ε̃ab =


+1 , if (a, b) = (1, 2)

−1 , if (a, b) = (2, 1)

0 , if a = b

 .
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the integral is chosen such that the drag force is negative (i.e. acts to oppose the motion of the string).
Therefore, dp2/dt = Πr

2. According to the definition of the momentum densities Eq.(4.5),

dp2

dt
:= Πr

2 = − 1

2πα′
√
−γ γrbG2 ν ∂bX

ν

= − 1

2πα′
√
−g grbG2 ν ∂bX

ν

= − 1

2πα′

√
1− v2 grbG2 ν ∂bX

ν ,

(6.21)

where the constraint equation Eq.(4.10) is used in the second line and Eq.(6.18) is used in the third line.
Expanding the implied summation over repeated indices in Eq.(6.21) yields

dp2

dt
= − 1

2πα′

√
1− v2G2 ν

(
grr ∂rX

ν + grt ∂tX
ν
)

= − 1

2πα′

√
1− v2G2 2

(
1

g

(
Gtt + GII ẊIẊI

)
∂rX

2 +
1

g

(
−GII X ′I ẊI

)
∂tX

2

)
=

1

2πα′
1√

1− v2
G2 2

((
Gtt + G2 2 ∂tX

2∂tX
2
)
∂rX

2 +
(
−G2 2 ∂rX

2 ∂tX
2
)
∂tX

2
)

=
1

2πα′
1√

1− v2
G2 2Gtt ∂rξ

= − 1

2πα′
r2
H

l2
v√

1− v2
,

(6.22)

where, in the second line, it was recognised that G2 ν = G2 2 is the only non-zero possibility since Gµν is
a diagonal matrix, and Eq.(A.35) was used to find the explicit entries of the inverse induced metric gab
(remembering that the gauge choice τ = t and σ = r must be made). In the third line Eq.(6.18) was used
and it was noted that, by construction, the only non-zero transverse direction was the X2 direction, while
in the fourth line the commutative property of partial derivatives and the ansatz Eq.(6.5) was used. The
final line follows from inputting the target spacetime metric entries (Eq.(A.32)) and the defining relation
for ξ′(r), Eq.(6.15) (where ξ′(r) > 0).

Comparing Eq.(6.14) (where πξ < 0) and Eq.(6.22), notice that πξ is understood to be a momentum density,
since

Πr
2 =

1

2πα′
πξ . (6.23)

Eq.(6.23) follows from Eq.(4.5) which gives Πσ
2 := 1

2πα′ ∂(∂σX2)L; and from the worldsheet gauge choice
σ = r, from which the momentum density becomes Πr

2 = 1
2πα′ ∂(∂r ξ)L = 1

2πα′πξ (where the ansatz
Eq.(6.5) is used in the first equality and Eq.(6.8) in the second equality).

For the phenomenologically relevant AdS5/N = 4 SYM case, the ‘t Hooft coupling is λ ≡ g2
YMNc, where

Nc is the number of colours and the Yang-Mills coupling is related to the string coupling by: gYM = 2
√
π gs.

The fundamental string length scale Eq.(4.64) becomes

α′ =
l2√

g2
YMNc

. (6.24)

Using Eq.(6.24) and the definition of Hawking temperature (Eq.(4.35)) with d = 5, the drag force (Eq.(6.22))
can be expressed in terms of phenomenologically relevant gauge theory variables,
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dp2

dt
= −

π
√
g2
YMNc
2

T 2 v√
1− v2

. (6.25)

Following the formal frameworki of Gubser [22], in the gauge theory the momentum p2 of the probe quark
can be theoretically121 related to its mass m through

p2(t) =
v√

1 − v2
m, (6.26)

where the 1/
√

1− v2 ≡ γ is identified as the Lorentz factor from special relativity. Eq.(6.26) holds regardless
of the dimension of the spacetime. Inserting Eq.(6.26) into Eq.(6.25) yields

dp2

dt
= −π T

2

2

√
g2
YMNc

p2(t)

m
, (6.27)

which is a linearly separable differential equation and easily integrable to find p2(t). Specifically,

∫ p2(t)

p2(0)

1

p2
dp2 = −

∫ t

0

T 2

m

π
√
g2
YMNc
2

dt

⇒ p2(t) = p2(0)Exp

[
− T 2

m

π
√
g2
YM N

2
t

]

⇒ p2(t) = p2(0) e−
t
t0 , where t0 =

2

π
√
g2
YMNc

m

T 2
.

(6.28)

The expression for the drag force experienced by a probe quark in a thermal plasma found in Eq.(6.27)
agrees with the central result of Gubser [22], and Herzog et al. [35]. Agreement with the later rests on the
identification ξ′ = x′Herzog/l

2 and g = −gHerzog/l
4.

Recall the Langevin Model discussed in section (3) describes a non-relativistic particle of massm, undergoing
Brownian motion in one spatial dimension. The non-retarded Langevin equation Eq.(3.1) is applicable if
– as in the case presented in this section – the Brownian particle is taken to have infinite mass with
respect to the constituent fluid particles. Since the infinitely massive probe quark travels at a constant
velocity v under the influence of the external force K(t), Newton’s First Law of Motion ensures that the
random force F (t) present in the system must be of equal and opposite magnitude (K(t) = −F (t)). The
Langevin equation is adjusted accordingly and becomes ṗ(t) = −γ0 p(t), where γ0 is the friction coefficient.
It is therefore apparent, from Eq.(6.27), that in the non-relativistic limit v � 1 the friction coefficient in
AdS5-Schwarzschild is given by

γAdS5
0 =

π T 2

2m

√
g2
YMNc . (6.29)

Using the Einstein-Sutherland relation Eq.(3.18) an expression for the diffusion coefficient can be obtained.
Specifically,

DAdS5

HQ =
2

π T

1√
g2
YMNc

=
2β

π
√
λ
, (6.30)

where the second equality follows from the ‘t Hooft coupling λ ≡ g2
YMNc, and the definition of Hawking

temperature Eq.(4.35).

121Both the momentum p2 and the mass m of the external quark are, in fact, infinite.
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6.2 Generalising to AdSd-Schwarzschild
The result for the drag force experienced by a probe quark in a thermal plasma found in Eq.(6.27) can
be generalised by repeating the calculation presented in subsection (6.1) in AdSd-Schwarzschild. The AdS-
Schwarzschild metric in d dimensions is given by Eq.(4.33), where the blackening factor of the Schwarzschild
black hole situated at the horizon, h(r; d), is defined in Eq.(4.34). Explicitly, the target spacetime metric
Gµν is given by Eq.(A.32), where µ, ν index over the spacetime directions (t, r, 2, ..., d− 1). As in subsec-
tion (6.1), the reparameterization offered by the gauge choice separates the temporal and radial coordinates
such that the worldsheet parameter space coordinates become τ = t and σ = r, and the mapping functions
between the worldsheet and the target spacetime are specified by Xµ(t, r).

The Hawking temperature of the black-brane in AdS-Schwarzschild scales with the number of dimensions
of the spacetime and – in AdSd-Schwarzschild – is given by Eq.(4.35). Unchanged as the calculation is
generalised to AdSd, the dynamics of the string are still described by the Nambu-Goto action (Eq.(4.53));
and the induced metric gab, its inverse gab, and its determinant g := det(gab) are still given by Eqs.(A.34,
A.35, A.36) respectively. Because of this, Eqs.(6.2)-(6.10) all remain true in AdSd-Schwarzschild.

Consider movement of the test string in AdSd-Schwarzschild, again with a constant velocity v in one of the
transverse directions, the X2 direction. Following the same reasoning as for the AdS5 case, Eq.(6.10) can be
solved to yield an expression for πξ. Since the blackening factor is now given by Eq.(4.34), πξ will depend
on the number of dimensions of the spacetime. Rearranging the first equality in Eq.(6.11) leaves

π2
ξ =

r4

l4
v2 . (6.31)

While, for AdSd-Schwarzschild, the second equality in Eq.(6.11) is rearranged to

r =
rH

(1 − v2)1/(d−1)
, (6.32)

where h = h(r; d) (Eq.(4.34)) is used. Inputting Eq.(6.32) into Eq.(6.31) results in an appropriate expression
for πξ,

πξ = ± v

(1 − v2)2/(d−1)

r2
H

l2
. (6.33)

Plugging this generalised relation for πξ into Eq.(6.10) guarantees that the square root in Eq.(6.10) is always
positive, and ξ(r) is everywhere real. The (±) in Eq.(6.33) determines if the quark is moving in the (+) or
(−) X2 direction. Again consider the case where πξ > 0. In AdSd-Schwarzschild, Eq.(6.10) becomes122

ξ′(r) = ±
l2 r3

H r
d−4 v

(
1− v2

)− 2
d−1

√
r4 (rH (v2−1) rd + r rdH)

−rH rd+4 + r5Hv
2 rd (1−v2)

− 4
d−1 +r5rdH

rH rd − r rdH
, (6.34)

which reduces down to the familiar Eq.(6.15) for d = 5. The function ξ′(r) can take on two values: (i) for
(ξ′(r) > 0, ξ(r) < 0) the string trails behind its boundary endpoint which is moving with a velocity v in
the (+) X2 direction, and (ii) for (ξ′(r) < 0, ξ(r) > 0) the string trails in front of its boundary endpoint
which is moving with a velocity v in the (+) X2 direction. Using the expression for ξ′(r) in Eq.(6.34) and
the definition for h(r; d) in Eq.(4.34), the Lagrangian density (Eq.(6.6)) becomes

L = −

√√√√ r4
(
rH (v2 − 1) rd + r rdH

)
−rH rd+4 + r5

H v
2 rd (1− v2)

− 4
d−1 + r5 rdH

. (6.35)

Since the definition of the Nambu-Goto action (Eq.(4.53)) implies L = −
√
−g, the determinant of the

induced metric becomes

122Mathematica is used to help simplify the algebra (see Mathematica Notebook [d]: DragForce.nb).
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g = −
r4
(
rH
(
v2 − 1

)
rd + r rdH

)
−rH rd+4 + r5

H v
2 rd (1− v2)

− 4
d−1 + r5 rdH

. (6.36)

To proceed with calculating the drag force dp2/dt note that the canonical momentum densities Πa
µ(t, σ)

(Eq.(4.5)), the string equations of motion (Eq.(4.19)), and the definition of the conserved charges associated
with the momentum densities Eq.(6.19) all remain the same in AdSd-Schwarzschild. As in the d = 5 case,
the string moves only in the X2 direction by construction, and its transverse momentum densities are only
non-zero in this direction. The X2 component of the spacetime momentum flowing over some general time
interval I of length ∆t, is still given by Eq.(6.20) in AdSd-Schwarzschild. For the physical solution where the
string trails behind its boundary endpoint (ξ′(r) > 0, ξ(r) < 0), dp2/dt = Πr

2. According to the definition
of the momentum densities Eq.(4.5),

dp2

dt
:= Πr

2 = − 1

2πα′
√
−γ γrbG2 ν ∂bX

ν

= − 1

2πα′
√
−g grbG2 ν ∂bX

ν

= − 1

2πα′

√√√√ r4
(
rH (v2 − 1) rd + r rdH

)
−rH rd+4 + r5

H v
2 rd (1− v2)

− 4
d−1 + r5 rdH

G2 ν

(
grr ∂rX

ν + grt ∂tX
ν
)

=
1

2πα′

√√√√ r4
(
rH (v2 − 1) rd + r rdH

)
−rH rd+4 + r5

H v
2 rd (1− v2)

− 4
d−1 + r5 rdH

−
1
2

G2 2Gtt ∂rξ

= − 1

2π α′
r2
H

l2
v

(1− v2)
2
d−1

,

(6.37)

where the constraint equation Eq.(4.10) is used in the second line; while in the third line, the summation
over repeated indices is expanded and Eq.(6.36) is used. Following a similar calculation to Eq.(6.22), rec-
ognize that G2 ν = G2 2 is the only non-zero possibility, Eq.(A.35) can be used to find the explicit entries of
the inverse induced metric gab and the ansatz Eq.(6.5) can be used to simplify the derivative terms. The
final line follows from inputting the target spacetime metric entries (Eq.(A.32)) and the defining relation
for ξ′(r), Eq.(6.34) (where ξ′(r) > 0).

The drag force given in Eq.(6.37) reduces down to Eq.(6.22) when d = 5 – a necessary consistency check.
Using the definition of Hawking temperature (Eq.(4.35)) to insert a unit factor

(
T 2 × 1/T 2

)
, the drag force

can be rewritten
dp2

dt
= − 8π l2 T 2

(d− 1)2 α′
v

(1− v2)
2
d−1

, (6.38)

where the momentum p2(t) is given by Eq.(6.26), which holds regardless of the dimension of the spacetime.
From Eq.(6.38), in the non-relativistic limit v � 1, the friction coefficient in AdSd-Schwarzschild is given
by

γAdSd
0 =

8π l2 T 2

(d− 1)2 α′m
. (6.39)

Using the Einstein-Sutherland relation Eq.(3.18) an expression for the diffusion coefficient in general d
dimensions can be obtained. Specifically,

DAdSd
HQ (d) =

(d− 1)2 α′

8π l2 T
=

(d− 1)2 β

8π
√
λ

, (6.40)

where the second equality follows from the fundamental string length scale Eq.(4.64), and the definition
of Hawking temperature Eq.(4.35). For d = 3, complete agreement is found between this equation and
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the diffusion coefficient found in the case of a finite mass heavy quark undergoing Brownian motion in the
thermal plasma (subsection (4.4), Eq.(4.122)) – a comforting consistency check for this work123.

The heavy quark diffusion coefficient in general d dimensions (Eq.(6.40)) can be compared to the light quark
diffusion coefficient in general d dimensions (Eq.(5.127)), to find

DAdSd
LQ (d) =

1

2
DAdSd

HQ (d) , (6.41)

which agrees with Eq.(5.62) for d = 3. The factor of 1/2 in Eq.(6.41) may arise through differences in
partitioning the worldsheet for the heavy and light quark test strings. Moerman et al. postulated in
[52] that by introducing a factor a which determines the fraction of the local speed of light the boundary
endpoint of the test string falls at, a general expression can be found for the mean-squared displacement of
said endpoint (and therefore the diffusion coefficient) which interpolates between the heavy and light quark
results124. Explicitly, the string falling endpoint’s mean-squared transverse displacement is given by

s2
small(t; a; d) =

1√
λ

(
(d− 1)β

4π

)2

ln

(
2aβ3

π3(a2 − 1)2t3
sinh2

(
π(a+ 1)t

β

)
sinh2

(
π(a− 1)t

β

)
csch

(
2πat

β

))
,

(6.42)

which, at late times, becomes125

s2
small(t; a; d)

(β�t)−→ (d− 1)2βt

4π
√
λ

[
1− a

2

]
+

(d− 1)2β2

16π2
√
λ


4 ln

(
β

2πt

)
, if a = 0

ln
(

aβ3

4π3(a2−1)2t3

)
, if 0 < a < 1

ln
(

β
4πt

)
, if a = 1

 + O
(
β

t

)0

.

(6.43)

The diffusion coefficient for a quark in a (d−1)-dimensional thermal plasma can be extracted from Eq.(6.43).
Specifically,

D(a; d) =
[
1− a

2

] (d− 1)2 β

8π
√
λ

. (6.44)

When a = 0, Eq.(6.44) reduces to the heavy quark diffusion coefficient, Eq.(6.40); and when a = 1, Eq.(6.44)
becomes the light quark diffusion coefficient, Eq.(5.127). Hence Eq.(6.42) provides a natural interpolation
between a test string set-up where the boundary endpoint is held stationary, and a test string set-up where
the boundary endpoint is allowed to fall at the local speed of light. However, values of a /∈ {0, 1} correspond
to a test string whose boundary endpoint is falling at velocity smaller than the local speed of light. An
external force opposing the motion of the falling string must be present in order for this to be the case126.
This might be realised by the introduction of a flavour D7-brane with a world-volume electric field on it
at the boundary127,128. Considering an external force acting to retard the motion of the falling string’s
endpoint is a natural and interesting extension of this work – a possible starting point for future research.

123Eq.(6.40) also agrees with the result given in Eq.(3.10) of [42]; the results from subsection (3.3) in [35]; the results from section
(3) in [22]; and the result – for d = 5 – from section (V) in [38]. The rigorous reader might also be interested in [36], a topical
study which computed an ultra-relativistic quark’s transverse momentum diffusion.

124The heavy and light quark set-ups to study Brownian motion are considered in sections (4) and (5), respectively.
125See Mathematica notebook [b] (BrownianMotion.nb) for a derivation of Eqs.(6.42)-(6.44) – access in appendix (A.7).
126The solution where a /∈ {0, 1} is not a physically obtainable string solution in the current set-up since the Virasoro constraints

(Eq.(4.18)) are violated and, consequently, the late time next-to-leading order behaviour in Eq.(6.43) does not smoothly
interpolate between the light and heavy quark results. This can be rectified by adding in an external field which will alter
the energy-momentum tensor (Eq.(4.6)) and, by construction, cause Tab to vanish (which ensures the Virasoro constraints are
satisfied).

127This corresponds to an additional force acting on the external Brownian particle in the boundary theory whose motion can
now be characterised by the generalised Langevin model (described in subsection (3.2)).

128For the case of the heavy quark, adding forced motion has been studied by de Boer et al. [42], subsection (3.2).
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7 Conclusions and Future Outlook
The main aim of this work was to present an instructional or pedagogical approach to using the AdS/CFT
correspondence to explore the dynamical behaviour of probe heavy and light quarks immersed in a ther-
mal plasma, such as the quark-gluon plasma created in heavy-ion experiments. This was achieved within
a rigorous and consistent framework, while correcting previous errors and vague statements in the literature.

To summarise, the gauge/string duality is briefly introduced in section (2). Particular attention is paid to
the throat construction of anti-de Sitter spacetime as a limit of D3-brane geometry, and the justification of
the AdS/CFT conjecture. Section (3) explored the basic theory of Brownian motion and Langevin dynamics
in the boundary theory. Specifically, particles undergoing Brownian motion in the absence of an external
force can be described by the non-retarded Langevin equation which is parametrized by two constants: (i)
the friction coefficient γ0, and (ii) the magnitude of the random force κ0. The second fluctuation-dissipation
theorem relates these two constants. It is possible to calculate the mean-squared displacement (Eq.(3.19)),
from which the time dependence of s2(t) is apparent. At early times, the Brownian particle’s behaviour
is proportional to time and the motion is expected to be ballistic s(t) ∼ t; while, at late times, the Brow-
nian particle motion is diffusive, s(t) ∼

√
t. The cross-over time sets the scale for early and late time

behaviour and is given by trelax, which represents the time it takes for a Brownian particle which had some
initial velocity at t = 0 to thermalize in the medium. The section concludes by describing the generalised
Langevin model which adapts the friction term to depend on the past trajectory of the Brownian parti-
cle and takes an additional external force acting on the system into account. In section (6) it was seen
that the generalised Langevin model can be used in a number of applications: to model heavy quark trail-
ing strings or light quark strings whose endpoint falls with a velocity that is less than the local speed of light.

Sections (4), (5) and (6) turn towards the bulk theory. In the bulk theory, the dual description of these
probe quarks are realised as test strings in an asymptotically anti-de Sitter-Schwarzschild background. Cal-
culations are computed in AdS-Schwarzschild, and then related to quantities in the boundary theory using
the AdS/CFT dictionary. In section (4) an on-mass-shell external heavy quark is modelled as a funda-
mental open string of length `0 attached at the boundary of anti-de Sitter spacetime and hanging towards
the stretched horizon. At the semiclassical level, the Hawking radiation due to the Schwarzschild black
hole environment excites the modes on the string – resulting in the string’s boundary endpoint enduring
irregular motion. This motion can be related to the Brownian motion of the external heavy quark in the
boundary gauge theory. The main results of this section include the derivation of the leading order, static
string solution in AdS3-Schwarzschild (Eq.(4.50)); the transverse equations of motion found by expanding
the Nambu-Goto action up to quadratic order and varying this action with respect to the transverse string
worldsheet coordinates XI (Eq.(4.66)); and from there the mean-squared displacement of the test string’s
boundary endpoint, s2(t), in AdS3-Schwarzschild (Eq.(4.109)). The cross-over time from early to late time
dynamics is found to be independent of the initial length of the string `0 and solely dependant on the Hawk-
ing temperature β = 1/T . As expected, in the early time limit (t� β) the motion is ballistic (Eq.(4.118));
while in the late time limit (t � β) the motion is diffusive, and the diffusion coefficient can be extracted
from s2(t)|t�β (Eq.(4.122)).

An off-mass-shell external light quark is modelled in section (5) as an open string, initially stretched between
the AdS boundary and just above the horizon, whose AdS boundary endpoint is released to fall at the local
speed of light. The set-up is termed the Limp Noodle configuration [52]. Using the Bars et al. method
[107, 108], the worldsheet of the Limp Noodle is partitioned into two regions and the leading order string
solution is found in AdS3-Schwarzschild (Eq.(5.40)). Again, the transverse fluctuations on the string excited
by the Schwarzschild black hole are considered. From the equations of motion of these fluctuations, the
string falling endpoint’s mean-squared transverse displacement s2(t) is calculated (Eq.(5.47)). The limiting
cases of s2(t) are then examined. For the small virtuality case (small string lengths `0 compared to the
radial position of the black-brane horizon rH), s2

small(t) is analytically evaluated (Eq.(5.58)) and the early
and late time behaviour found to be ballistic and diffusive respectively. For the arbitrary virtuality case,
s2(t) can be analytically found in the early time limit (Eq.(5.70)); while the behaviour of arbitrary virtuality
quarks at asymptotically late times (i.e. in the near-horizon region) is found to be encoded in the small
virtuality case, i.e. s2(t)|t�β = s2

small(t) (Eq.(5.76)). Since s
2
small(t; d) can be solved in any d ≥ 3 dimensions,

this universality of late times motivates the generalisation of the mean-squared displacement s2(t)|t�β to
AdSd-Schwarzschild. In terms of original advancement, subsection (5.3) presents a very important part of
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this dissertation: correcting Moerman et al. [52] by presenting the proper method in which to generalise to
s2(t; d). Finally, the diffusion coefficient in AdSd-Schwarzschild is extricated from s2(t; d)|t�β and given in
Eq.(5.127) by

DAdSd
LQ (d) =

(d− 1)2β

16π
√
λ

,

which is – to the author’s knowledge – the first complete, consistent derivation of the light quark diffusion
coefficient in d dimensions.

In section (6), a trailing string in AdS5-Schwarzschild which models an infinitely massive probe quark moving
with a constant velocity v in a N = 4 SYM thermal plasma is considered. By making use of the late-time
behaviour ansatz (Eq.(6.5)), the drag force on the test string is calculated in the bulk and rewritten – via
the AdS/CFT correspondence – in terms of relevant quantities in the gauge theory (Eq.(6.25)). Because the
external quark is moving with a constant velocity in the boundary theory, it can be modelled by the Langevin
equation adapted such that the external force K(t) acting on the system is of equal and opposite magnitude
to the random force (K(t) = −F (t)). Hence the friction coefficient γ0 can be read off from Eq.(6.27),
and related – using the Einstein-Sutherland relation – to the diffusion coefficient in d = 5 dimensions. In
the second subsection, the drag force calculation is generalised to AdSd-Schwarzschild and the diffusion
coefficient is found to be given in Eq.(6.40) by

DAdSd
HQ (d) =

(d− 1)2 β

8π
√
λ

,

which agrees, for d = 3, with the diffusion coefficient found by studying the transverse fluctuations on the
heavy quark’s test string in section (4) (Eq.(4.122)).

The heavy and light quark’s diffusion constants in general d dimensions are related by a factor of a 1/2
(Eq.(6.41)). This disparity may arise through the differences in partitioning the worldsheet for the heavy
and light quark test strings. As was briefly discussed towards the end of section (6), in order to understand
the physical origin of the 1/2 factor an interpolation between DAdSd

LQ (d) and DAdSd
HQ (d) can be sought. This

leads to the realisation that considering test strings with boundary endpoints falling slower than the local
speed of light will only yield physically valid solutions if an external force is introduced. Considering an
external force acting to retard the motion of the falling string’s endpoint is a natural and interesting exten-
sion of this work, and a possible starting point for future research. The publications [42, 110–112] might
provide a good commencement for this exercise.

The main contribution of this dissertation to the field of AdS/CFT calculations is presenting a definitive,
consolidated theoretical derivation of the light and heavy quark diffusion constants in general d dimensions.
The work acts as a springboard from which students might pursue further research avenues. Some of
these that the author has considered – besides the addition of an external electric field – are (i) repeating
these calculations using a numerical framework in order to confirm the analytic results; (ii) examining the
fluctuation-dissipation theorem in the bulk; (iii) considering next-to-leading order transverse fluctuations
on the leading order solution (this would surely prove difficult as the expanded, near-horizon metric in
AdSd-Schwarzschild would no longer be conformal in (t, r∗) coordinates); and (iv) considering different test
string configurations to illuminate other aspects of the thermal plasma. With regards to the latter, one such
example is studying the quantum fluctuations in the non-transverse directions of a trailing string where the
boundary endpoint is allowed to fall.
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A Appendix

A.1 Polyakov String Equations of Motion

Working in the static gauge, the string equations of motion are derived in this appendix by calculating the
functional derivative of the Polyakov Action with respect to the string worldsheet coordinates and setting
this variation to zero. The calculation of the string equations of motion presented here follows the layout
of appendix (A) in Moerman et al.’s exposition on light quark Brownian motion [52].

Using the definition Eq.(4.5), the Polyakov Action Eq.(4.1) is rewritten in terms of the canonical momentum
densities

SP =
1

2

∫
M

d2σΠa
µ(t, σ) ∂aX

µ(t, σ) . (A.1)

Determining the functional derivative of SP with respect to Xµ and setting this variation to vanish, yields

0 = δXSP =
1

2

∫
M

d2σ
[(
δΠa

µ

)
∂aX

µ + Πa
µ ∂a

(
δXµ

)]
=

1

2

∫
M

d2σ
[(
δΠa

µ

)
∂aX

µ + ∂a
(
Πa
µ δX

µ
)
− δXµ ∂a

(
Πa
µ

)]
,

(A.2)

where the product rule is used in the second line.

The functional derivative of the momentum densities with respect to Xµ gives two terms

δXΠa
µ = − 1

2πα′
√
−γ γab

[
Gµν ∂b

(
δXν

)
+ ∂ρGµν δX

ρ∂bX
ν
]
, (A.3)

since, in a curved background, the worldsheet coordinates Xµ as well as the spacetime metric Gµν (which
also depends on Xµ) are varied. Hence the first term in Eq.(A.2),

(
δΠa

µ

)
∂aX

µ, becomes

(
δXΠa

µ

)
∂aX

µ =
−1

2πα′
√
−γ γabGµν ∂b

(
δXν

)
∂aX

µ + ∂ρGµν δX
ρ
( −1

2πα′
√
−γ γab ∂bXν

)
∂aX

µ

=
−1

2πα′
√
−γ γabGµν ∂bXν ∂a

(
δXµ

)
+ ∂ρGµν δX

ρ
( −1

2πα′
√
−γ γabGγν ∂bXν

)
Gγν ∂aX

µ

= Πa
µ ∂a

(
δXµ

)
+ ∂ρGµν δX

ρ Πa
γ G

γν ∂aX
µ

= ∂a
(
Πa
µ δX

µ
)
− δ Xµ ∂a

(
Πa
µ

)
+ 2 δXρ

(1

2
Gγν ∂ρGµν

)
Πa
γ ∂aX

µ

= ∂a
(
Πa
µ δX

µ
)
− δ Xµ ∂a

(
Πa
µ

)
+ 2 δXρ

(1

2
Gγν

(
∂ρGµν + ∂µGρν − ∂ν Gρµ

))
Πa
γ ∂aX

µ ,

(A.4)

where the definition of the momentum densities Eq.(4.5) is used in the third line, and the product rule is
used in the fourth line. In the final line two extra terms are added. This can be done since

Πa
γ ∂aX

µ
(
∂µGρν − ∂ν Gρµ

)
= − 1

2πα′
√
−η Gµν

[
ηab ∂bX

ν ∂aX
µ
(
∂µGρν − ∂ν Gρµ

) ]
= 0 , (A.5)

where the first equality holds in the conformal gauge (γab = ηab) – which, as discussed in subsection (4.1),
is chosen to eliminate the Weyl invariance in the Polyakov action. To prove Eq.(A.5), notice that the
Minkowski metric can be expanded

ηab ∂aX
µ ∂bX

ν
(
∂µGρν − ∂ν Gρµ

)
= ∂τ X

µ ∂τ X
ν
(
∂µGρν − ∂ν Gρµ

)
+ ∂σX

µ ∂σX
ν
(
∂µGρν − ∂ν Gρµ

)
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and that for each set of reflective cases (µ = 1, ν = 2 and µ = 2, ν = 1), the terms generated by the
first case will cancel those generated by the second. For the identical case (which doesn’t have a reflective
partner case), i.e. µ = ν = 1 or µ = ν = 2, the bracket

(
∂µGρν − ∂ν Gρµ

)
vanishes.

The Christoffel symbols are now able to be defined

Γαµν :=
1

2
Gαγ

(
∂µGνγ + ∂ν Gµγ − ∂γ Gµν

)
. (A.6)

These symbols are a set of numbers which characterise a metric connection. A metric connection defines
precisely how distances are measured on a surface, by invoking the notion of consistently transporting data
in a parallel manner along a family of curves [96].

With this definition, Eq.(A.4) becomes(
δXΠa

µ

)
∂aX

µ = ∂a
(
Πa
µ δX

µ
)
− δXµ ∂a

(
Πa
µ

)
+ 2 δXρ Γγρµ Πa

γ ∂aX
µ . (A.7)

Finally, inputting Eq.(A.7) into Eq.(A.2) returns

0 = δXSP =
1

2

∫
M

d2σ
[
− 2 δXµ ∂a

(
Πa
µ

)
+ 2 δXρ Γγρµ Πa

γ ∂aX
µ + 2 ∂a

(
Πa
µ δX

µ
)]

= −
∫
M

d2σ δXµ
[
∂a Πa

µ − Γγµν Πa
γ ∂aX

ν
]

+

∫
M

d2σ ∂a
(
Πa
µ δX

µ
)

= −
∫
M

d2σ δXµ
[
∂a Πa

µ − Γγµν Πa
γ ∂aX

ν
]

+

∫
∂M

dσb εba
(
Πa
µ δX

µ
)

= −
∫
M

d2σ δXµ
[
∂a Πa

µ − Γγµν Πa
γ ∂aX

ν
]

+

∫ τf

0

dτ
[
δXµ Πa

µ

∣∣σ=σf

σ=0

]
,

(A.8)

where Stokes’ Theorem in d-dimensions [96] is used in the third line. In the final line the coordinates on
the worldsheet parameter space are chosen to be σa = (t, σ)a where σa ∈ M = [0, tf ] × [0, σf ], and one of
the integrals of the last term is simplified by using δXµ|t∈{0,tf} = 0.

Choosing the boundary conditions

δXµ Πa
µ

∣∣σ=σf

σ=0
= 0 , (A.9)

the last term in Eq.(A.8) disappears. Hence, the string equations of motion are given by

0 = ∂a Πa
µ − Γαµν ∂aX

ν Πa
α =: ∇a Πa

µ , (A.10)

which is the string analogue of the geodesic equation for a point particle [96].
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A.2 The Virasoro Constraints and String Equations of Motion in Isothermal
Coordinates

Since the metric of any (1 + 1)-dimensional subspace can be transformed into a conformally flat metric
[107, 108] a new, isothermal coordinate system is introduced. These isothermal coordinates yµ

′
(σ+, σ−) are

given by Eq.(5.2), while the corresponding string mapping functions Y µ
′
(σ+, σ−) are defined in Eq.(5.8).

Notice that light-cone coordinates have been chosen for the parameter space. In this appendix, the Vira-
soro constraint equations and the string equations of motion, Eqs.(4.18, 4.19), are rewritten in terms of
Y µ
′
(σ+, σ−).

In the conformal gauge, the Virasoro constraint equations (Eqs.(4.18)) become

0 = Gηµν ∂±X
µ ∂±X

ν

= −G∂±X0 ∂±X
0 + G∂±X

1 ∂±X
1

= −G
2

[
∂±

(
Y 0′ + Y 1′

)
∂±

(
Y 0′ + Y 1′

)]
+
G

2

[
∂±

(
Y 0′ − Y 1′

)
∂±

(
Y 0′ − Y 1′

)]
= −2G∂±Y

0′ ∂±Y
1′

= ∂±Y
0 ∂±Y

1 ,

(A.11)

where µ, ν ∈ {0, 1} are spacetime coordinates, ∂± := ∂
∂σ± , and the definition of the new mapping functions

Eq.(5.8) is used in the third line. In the final line, recognise that G is defined as a non-zero scalar function
and that the indices have been renamed (µ′ = µ). This is precisely the Virasoro constraint equations given
in subsection (5.1.1), Eq.(5.13).

The string equations of motion, Eq.(4.19), become

∂±Π±µ − Γαµν ∂±X
ν Π±α = 0 , (A.12)

in the light-cone coordinate frame. This breaks into two equations of motion, since µ = (0, 1). For µ = 0,
the string equations of motion are(

∂+Π+
0 − Γα0ν ∂+X

ν Π+
α

)
+
(
∂−Π−0 − Γα0ν ∂−X

ν Π−α
)

= 0 . (A.13)

The first bracket in Eq.(A.13) can be simplified

∂+Π+
0 − Γα0ν ∂+X

ν Π+
α

= ∂+

(
− 1

2πα′
G∂−X

0

)
− Γα0ν ∂+X

ν

(
1

2πα′
Gηαα ∂−X

α

)
=

1

2πα′
[
−∂+

(
G∂−X

0
)

+ Gηαα
(
−Γα00 ∂+X

0 ∂−X
α − Γα01 ∂+X

1 ∂−X
α
)]

=
1

2πα′
[
−∂+

(
G∂−X

0
)

+G
(
Γ0

00 ∂+X
0 ∂−X

0 − Γ1
00 ∂+X

0 ∂−X
1 + Γ0

01 ∂+X
1 ∂−X

0 − Γ1
01 ∂+X

1 ∂−X
1
)]
,

(A.14)

where, in the first line, the canonical momentum densities Eq.(5.9) are used and the spacetime metric
simplifies due to the conformal gauge choice (i.e. Gµν(x) = Gηµν , Gµν(x) = 1/Gηµν). Further, the
Christoffel symbols, defined in Eq.(4.20), can be calculated
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Γ0
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(A.15)

Hence Eq.(A.14) becomes

1

2πα′

[
−∂+

(
G∂−X

0
)

+
1

2

(
∂0G∂+X

0 ∂−X
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1 ∂−X
1
)]

,

(A.16)

where ∂µ := ∂
∂Xµ for µ = (0, 1). The second bracket in Eq.(A.13) can be similarly simplified
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ν Π−α
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1
)]
,

(A.17)

where the calculated Christoffel symbols (Eq.(A.15)) are used in the final line. Using the simplifications for
the first and second brackets (Eqs.(A.16, A.17)), the first string equation of motion Eq.(A.13) becomes

− ∂+

(
G∂−X

0
)
− ∂−

(
G∂+X

0
)

+ ∂0G∂+X
0 ∂−X

0 − ∂0G∂+X
1 ∂−X

1 = 0 . (A.18)

Following a similar calculation as before, the second string equation of motion (where µ = 1) is(
∂+Π+

1 − Γα1ν ∂+X
ν Π+

α

)
+
(
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= 0 . (A.19)

Again, the first bracket in Eq.(A.19) can be simplified
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(A.20)

80



where, in the first line, the canonical momentum densities Eq.(5.9) are used and the spacetime metric
simplifies due to the conformal gauge choice. The Christoffel symbols now need to be calculated. However
first note that the Christoffel symbols are symmetric on their lower indexes [96], i.e. Γγαβ = Γγβα. Therefore
Γ0

10 = Γ0
01 and Γ1

10 = Γ1
01 (the latter of which have both been calculated in Eq.(A.15)). The remaining

two Christoffel symbols can be calculated

Γ0
11 =

1

2G
η0γ (η1γ ∂1G + η1γ ∂1G − η11 ∂γG) =

1

2G
η00 (− ∂0G) =

1

2G
(∂0G)

Γ1
11 =

1

2G
η1γ (η1γ ∂1G + η1γ ∂1G − η11 ∂γG) =

1

2G
η11 (∂1G + ∂1G − ∂1G) =

1

2G
(∂1G) .

(A.21)

Hence Eq.(A.20) becomes

1

2πα′

[
∂+

(
G∂−X

1
)

+
1

2

(
∂1G∂+X

0 ∂−X
0 − ∂0G∂+X

0 ∂−X
1 + ∂0G∂+X

1 ∂−X
0 − ∂1G∂+X

1 ∂−X
1
)]

.

(A.22)

The second bracket in Eq.(A.19) can be similarly simplified

∂−Π−1 − Γα1ν ∂−X
ν Π−α

= ∂−

(
1

2πα′
G∂+X

1

)
− Γα1ν ∂−X

ν

(
1

2πα′
Gηαα ∂+X

α

)
=

1

2πα′
[
∂−
(
G∂+X

1
)

+ Gηαα
(
−Γα10 ∂−X

0 ∂+X
α − Γα11 ∂−X

1 ∂+X
α
)]

=
1

2πα′
[
∂−
(
G∂+X

1
)

+ G
(
Γ0

10 ∂−X
0 ∂+X

0 − Γ1
10 ∂−X

0 ∂+X
1 + Γ0

11 ∂−X
1 ∂+X

0 − Γ1
11 ∂−X

1 ∂+X
1
)]

=
1

2πα′

[
∂−
(
G∂+X

1
)

+
1

2

(
∂1G∂−X

0 ∂+X
0 − ∂0G∂−X

0 ∂+X
1 + ∂0G∂−X

1 ∂+X
0 − ∂1G∂−X

1 ∂+X
1
)]
,

(A.23)

where the calculated Christoffel symbols (Eqs.(A.15, A.21)) are used in the final line. Using the simplifica-
tions for the first and second brackets (Eqs.(A.22, A.23)), the second string equation of motion Eq.(A.19)
becomes

∂+

(
G∂−X

1
)

+ ∂−
(
G∂+X

1
)

+ ∂1G∂+X
0 ∂−X

0 − ∂1G∂+X
1 ∂−X

1 = 0 . (A.24)

Now, the two string equations of motion (Eqs.(A.18, A.24)) can be rewritten in terms of the new string
embedding functions Y µ

′
(σ+, σ−). Combining Eq.(A.18) and Eq.(A.24) yields

− ∂+

(
G∂−

(
X0 −X1

))
− ∂−

(
G∂+

(
X0 −X1

))
+ (∂0G+ ∂1G)

[
∂+X

0 ∂−X
0 − ∂+X

1 ∂−X
1
]

= 0 ,
(A.25)

where the derivatives are defined as ∂µ := ∂
∂Xµ for µ = (0, 1). By the chain rule

∂0G = (∂0′G+ ∂1′G) and ∂1G = (∂0′G− ∂1′G) , (A.26)

where ∂µ′ := ∂
∂Y µ′

for µ′ = (0′, 1′). Using Eq.(A.26) and the definition of Y µ
′
(σ+, σ−) (Eq.(5.8)), the

equation of motion Eq.(A.25) becomes
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0 = −
√

2
[
∂+

(
G∂−Y

1′
)

+ ∂−

(
G∂+Y

1′)
)]

+
√

2 ∂0′G

[
1

2
∂+

(
Y 0′ + Y 1′

)
∂−

(
Y 0′ + Y 1′

)
− 1

2
∂+

(
Y 0′ − Y 1′

)
∂−

(
Y 0′ − Y 1′

)]

= ∂+

(
G∂−Y

1′
)

+ ∂−

(
G∂+Y

1′
)

+
1

2
∂0′G

[
∂+Y

0′∂−Y
0′ + ∂+Y

0′∂−Y
1′ + ∂+Y

1′∂−Y
0′ + ∂+Y

1′∂−Y
1′

− ∂+Y
0′∂−Y

0′ + ∂+Y
0′∂−Y

1′ + ∂+Y
1′∂−Y

0′ − ∂+Y
1′∂−Y

1′
]

= ∂+

(
G∂−Y

1
)

+ ∂−
(
G∂+Y

1
)
− (∂0G)

[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]
,

(A.27)

where the indices have been renamed (µ′ = µ) in the last line. This is precisely one of the string equations of
motion given in subsection (5.1.1), Eq.(5.13). In order to find the other string equation of motion, subtract
Eq.(A.18) from Eq.(A.24) to yield

0 = −∂+

(
G∂−

(
X0 +X1

))
− ∂−

(
G∂+

(
X0 +X1

))
+ (∂0G− ∂1G)

[
∂+X

0 ∂−X
0 − ∂+X

1 ∂−X
1
]

−
√

2
[
∂+

(
G∂−Y

0′
)

+ ∂−

(
G∂+Y

0′)
)]

+
√

2 ∂1′G

[
1

2
∂+

(
Y 0′ + Y 1′

)
∂−

(
Y 0′ + Y 1′

)
− 1

2
∂+

(
Y 0′ − Y 1′

)
∂−

(
Y 0′ − Y 1′

)]
= ∂+

(
G∂−Y

0
)

+ ∂−
(
G∂+Y

0
)
− (∂1G)

[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]
.

(A.28)

The Virasoro constraints Eq.(A.11) and the string equations of motion Eqs.(A.27, A.28) agree with the
equations given by Bars et al. in [107, 108] where u = Y 0 and v = Y 1. Further, using the product and
chain rules, Eq.(A.27) becomes

0 = (∂+G)
(
∂−Y

1
)

+ G∂+

(
∂−Y

1
)

+ (∂−G)
(
∂+Y

1
)

+ G∂−
(
∂+Y

1
)

− (∂0G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]

=
[
(∂0G)

(
∂+Y

0
)

+ (∂1G)
(
∂+Y

1
)] (

∂−Y
1
)

+
[
(∂0G)

(
∂−Y

0
)

+ (∂1G)
(
∂−Y

1
)] (

∂+Y
1
)

+ 2G∂+

(
∂−Y

1
)

− (∂0G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]

= G∂+∂−Y
1 + (∂1G)

(
∂+Y

1
) (
∂−Y

1
)
,

(A.29)

and Eq.(A.28) becomes

0 = (∂+G)
(
∂−Y

0
)

+ G∂+

(
∂−Y

0
)

+ (∂−G)
(
∂+Y

0
)

+ G∂−
(
∂+Y

0
)

− (∂1G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]

=
[
(∂0G)

(
∂+Y

0
)

+ (∂1G)
(
∂+Y

1
)] (

∂−Y
0
)

+
[
(∂0G)

(
∂−Y

0
)

+ (∂1G)
(
∂−Y

1
)] (

∂+Y
0
)

+ 2G∂+

(
∂−Y

0
)

− (∂1G)
[(
∂+Y

0
) (
∂−Y

1
)

+
(
∂+Y

1
) (
∂−Y

0
)]

= G∂+∂−Y
0 + (∂0G)

(
∂+Y

0
) (
∂−Y

0
)
,

(A.30)

which agrees exactly with the string equations of motion given by Moerman et al. in [52].
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A.3 Energy of a Test String in an AdS-Schwarzschild Background

At t = 0 the test string set-up for the heavy quark agrees with the test string set-up for the light quark,
since the string is initially static in both cases – i.e. XI = 0 (where I ∈ (2, 3, ... , d − 1)) at time t = 0,
with embedding functions Xµ(t, σ) = (t, r(t, σ), 0)

µ. The on-mass-shell heavy quark’s mass or the off-
mass-shell light quark’s mass129 can be calculated by finding the total energy of the relevant test string in
AdSd-Schwarzschild. In order to calculate the string’s total energy, the configuration of the string is chosen
to be stretched between the radial positions r = 0 and r = `0. This choice will simplify the calculation.

The AdSd-Schwarzschild metric in d dimensions is given by

ds2
d := Gµν dx

µ dxν

= Gtt dt
2 + Grr dr

2 + GII d ~X
2
I

=
r2

l2

(
− h(r; d) dt2 + d ~X2

I

)
+

l2

r2

dr2

h(r; d)
,

(A.31)

where t ∈ [0,∞) is the temporal coordinate, r ∈ [0,∞) is the radial coordinate, and the transverse spatial
directions are denoted by ~XI =

(
X2, X3, ...., X(d−1)

)
∈ Rd−2. Further, l ∈ R+ is the curvature radius of

AdSd and Sd; and the blackening factor of the Schwarzschild black hole situated at the horizon, h(r; d), is
given by Eq.(4.34). Explicitly, the target spacetime metric Gµν is given by

Gµν =



(
− r2

l2 h(r; d)
)

0 0 0 0 0

0
(
l2

r2
1

h(r;d)

)
0 0 0 0

0 0
(
r2

l2

)
0 0 0

0 0 0
(
r2

l2

) . . . 0

0 0 0
. . . . . . 0

0 0 0 0 0
(
r2

l2

)


, (A.32)

where µ, ν index over (t, r, 2, ... , d− 1). The induced worldsheet metric gab, defined in Eq.(4.2), takes the
explicit form

gab =

gtt gtσ

gσt gσσ

 , (A.33)

since (t, σ) are the two parameter space coordinates in the static gauge (τ = t). In order to determine
the explicit entries of the induced metric gab, the definition Eq.(4.2) is used to calculate each component.
Specifically,

gab =

Gtt + GII Ẋ
2
I GII ẊI X

′
I

GII X
′
I ẊI r′2Grr + GII X

′ 2
I

 , (A.34)

where Ẋ ≡ ∂tX and X ′ ≡ ∂σX; I indexes over the transverse directions XI =
(
X2, X3, ...., X(d−1)

)
; and

the fact that Gµν (Eq.(A.32)) is a diagonal matrix is used.

129Particles are on the mass shell, or simply on-mass-shell, if their behaviour satisfies Einstein’s energy and momentum relation
E2 = (pc)2 + (2mc)2. Particles whose behaviour violates this relation are known as off-mass-shell. In the case of the light
quark it starts at t = 0 as an off-mass-shell particle (corresponding to the initial static string), radiates energy as it travels
through the thermal medium (string contracts as the boundary endpoint falls at the local speed of light), and finally stops
radiating as it becomes an on-mass-shell particle. This appendix is focused on calculating the mass (or virtuality) of the light
quark as an initially off-mass-shell particle; and the mass of an on-mass-shell heavy quark.
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For later use, the inverse metric gab (where gab ≡ (gab)
−1) is also written out explicitly

gab =
1

det(gab)

r′2Grr + GII X
′ 2
I −GII ẊI X

′
I

−GII X ′I ẊI Gtt + GII Ẋ
2
I

 . (A.35)

The determinant of the induced metric is

g := det (gab) =
(
r′2Grr + GII X

′ 2
I

) (
Gtt + GII Ẋ

2
I

)
−
(
G2
II Ẋ

2
I X

′ 2
I

)
= r′2Grr Gtt + r′2Grr GII Ẋ

2
I + GttGII X

′ 2
I + G 2

II X
′ 2
I Ẋ 2

I − G 2
II Ẋ

2
I X

′ 2
I

= Grr Gtt

(
r′2 +

r′2

Gtt
GII Ẋ

2
I +

1

Grr
GII X

′ 2
I

)
.

(A.36)

Now that the ground work has been laid, the total energy of the static string can be calculated

E =

∫ `0

0

dσΠτ
t

= − 1

2πα′

∫ `0

0

dσ
√
−γ γτbGtν ∂bXν

= − 1

2πα′

∫ `0

0

dσ
√
−g gtbGtt ∂bXt

= − 1

2πα′

∫ `0

0

dσ
√
−g
(
gtt ∂tX

t + gtσ ∂σX
t
)(
− r2

l2
h(r; d)

)

=
1

2πα′

∫ `0

0

dσ
√
−g gtt

(
r2

l2
h(r; d)

)

=
1

2πα′

∫ `0

0

dσ
√
−g
(
r′2Grr + GII X

′ 2
I

)(r2

l2
h(r; d)

)

=
1

2πα′

∫ `0

0

dσ
√
−g r′2

(
l2

r2

1

h(r; d)

)(
r2

l2
h(r; d)

)
,

(A.37)

where the constraint equation Eq.(4.10) and the static gauge choice (τ = t) are used in the third line, and
Eq.(A.32) is used in the fourth line. The fifth line follows from remembering the string is static (XI = 0),
and Eq.(A.35) is used in the sixth line.

Using Eq.(A.36), the total energy of the static string (Eq.(A.37)) becomes

E =
1

2πα′

∫ `0

0

dσ r′2

√
−Grr Gtt

(
r′2 +

r′2

Gtt
GII Ẋ 2

I +
1

Grr
GII X ′ 2I

)

=
1

2πα′

∫ `0

0

dσ r′2
√
−r′2Grr Gtt

=
1

2πα′

∫ `0

0

dσ ∂3
σr ,

(A.38)

where Eq.(A.36) is used in the first line, the second line follows again from XI = 0, and Eq.(A.32) is used
the final line.
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From Eq.(A.38) it is apparent that the energy of the string is contingent on how the radial coordinate r
depends on the worldsheet parameter space coordinate σ. In the static gauge (which is employed in sections
(4) and (5)) the energy of the test string is easily found in AdS3-Schwarzschild by using the identification
Eq.(4.52) and solving the integral in Eq.(A.38). Since the tortoise coordinate in anti-de Sitter-Schwarzschild
spacetime can only be inverted for d = 3, an equivalent identification to Eq.(4.52) in AdSd-Schwarzschild
can not be found. However, a different gauge choice can be made. Taking, for example, the gauge choice130
in section (6) where τ = t and σ = r are the worldsheet coordinates, Eq.(A.38) becomes

E =
1

2πα′
[
`0 − 0

]
, (A.39)

in AdSd-Schwarzschild. Therefore

E2 ≡ m2
q =

`20
4π2α′2

, (A.40)

where the first equivalence follows from the AdS/CFT correspondence: the energy of a test string in the bulk
theory is equivalent to the mass of the given probe quark in the boundary theory. Notice that Eq.(A.40)
agrees with Eq.(4.31), which is a reflection of the fact that the spacetime in the bulk theory is curved
precisely along the additional radial direction r, and not along the temporal or transverse directions. Since
the boundary theory does not include this radial direction, from the perspective of the probe quark its mass
will be the same whether the string is in Minkowski or AdS-Schwarzschild spacetime131. Considering that

√
α′ ≡ l

λ1/4
, (A.41)

where l ∈ R+ is the radius of curvature of AdSd and λ = g2
YM Nc is the ’t Hooft coupling (see table (1),

page 6); the quark’s mass132 becomes

m2
q =

λ `20
4π2 l4

. (A.42)

Alternatively, Eq.(A.42) can be rewritten as

mq =

√
λ `0
β rH

=

√
λ

β

(rs + `0 − rs)
rH

=

√
λ

β

(
r̃0 −

rs
rH

)
≈
√
λ

β
r̃0 , (A.43)

where the first equality follows from using the definition of the Hawking temperature Eq.(4.35); the second
equality from Eq.(4.88); and the approximation from the definition of the stretched horizon rs = (1 + ε)rH
(where 0 < ε� 1). Using the definition of the Hawking temperature yields mq =

√
λ r̃0 T . Eq.(A.43) might

be a convenient form of the quark mass mq in some cases.

130This gauge choice is also made in [22, 35].
131In an AdS/CFT context, this implies that the energy of the string is equivalent in Minkowski or AdS-Schwarzschild spacetime.
132Remembering this is either the initial, off-mass-shell mass for the light quark or the on-mass-shell mass for the heavy quark.
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A.4 Nambu-Goto String Equations of Motion for Transverse Fluctuations

The calculation of the string equations of motion for the transverse fluctuations presented in this appendix,
follows the layout of appendix (B) in Moerman et al.’s exposition on light quark Brownian motion [52].
Working in the static gauge, the transverse string equations of motion are derived by varying the effective
action for the transverse fluctuations with respect to the transverse string worldsheet coordinates, and set-
ting this functional variation to zero.

Using the definition Eq.(4.5), the effective transverse action Eq.(4.61) can be written in terms of the trans-
verse canonical momentum densities

S
(2)
NG =

1

2

∫
M

d2σΠa
I(t, σ) ∂aX

I(t, σ) . (A.44)

Determining the functional derivative of S(2)
NG with respect to XI and setting this variation to vanish, results

in

0 = δXS
(2)
NG =

1

2

∫
M

d2σ
[(
δΠa

I

)
∂aX

I + Πa
I ∂a

(
δXI

)]
=

1

2

∫
M

d2σ
[(
δΠa

I

)
∂aX

I + ∂a
(
Πa
I δX

I
)
− ∂a

(
Πa
I

)
δXI

]
,

(A.45)

where the product rule is used in the second line.

The functional derivative of the momentum densities with respect to XI is given by

δXΠa
I = − 1

2πα′
(√
−g gabGIJ

)∣∣
Xµ0

∂b
(
δXJ

)
, (A.46)

where the spacetime metric Gµν does not need to be varied since it is independent of the transverse directions
XI (Eq.(A.32)). Hence the first term in Eq.(A.45),

(
δΠa

I

)
∂aX

I , becomes

(
δXΠa

I

)
∂aX

I =

(
− 1

2πα′
(√
−g gabGIJ

)∣∣
Xµ0

∂b
(
δXJ

))
∂aX

µ

=

(
− 1

2πα′
(√
−g gabGIJ

)∣∣
Xµ0

∂aX
µ

)
∂b
(
δXJ

)
= Πb

J ∂b
(
δXJ

)
= ∂b

(
Πb
JδX

J
)
−
(
∂bΠ

b
J

)
δXJ ,

(A.47)

where the definition of the momentum densities Eq.(4.65) are used in the third line, and the product rule
is used in the final line. Inputting Eq.(A.47) into Eq.(A.45), yields

0 = δXS
(2)
NG =

1

2

∫
M

d2σ
[
∂b
(
Πb
J δX

J
)
−
(
∂b Πb

J

)
δXJ + ∂a

(
Πa
I δX

I
)
− ∂a

(
Πa
I

)
δXI

]
= −

∫
M

d2σ δXI
(
∂aΠa

I

)
+

∫
M

d2σ ∂a
(
Πa
I δX

I
)

= −
∫
M

d2σ δXI
(
∂aΠa

I

)
+

∫
∂M

dσb εba
(
Πa
I δX

I
)

= −
∫
M

d2σ δXI
(
∂aΠa

I

)
+

∫ τf

0

dτ
[
Πa
I δX

I
∣∣σ=σf

σ=0

]
,

(A.48)
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where, in the second line, the indices have been renamed and the terms grouped; and Stokes’s Theorem
in d-dimensions [96] has been used in the third line. In the final line the coordinates on the worldsheet
parameter space are chosen to be σa = (t, σ)a where σa ∈ M = [0, tf ]× [0, σf ], and one of the integrals of
the last term is simplified by using δXI |t∈{0,tf} = 0.

Choosing the boundary conditions

Πa
I δX

I
∣∣σ=σf

σ=0
= 0 , (A.49)

the last term in Eq.(A.48) disappears. Hence, the string equations of motion for the transverse fluctuations
are given by

0 = ∂a Πa
I = ∇a Πa

I , (A.50)

which agrees with Eq.(4.66). The second equality follows because ∇aΠa
µ := ∂aΠa

µ−Γαµν ∂aX
νΠa

µ in curved
spacetime, but the second term vanishes since the Christoffel symbols are identically zero (ΓαIJ = 0) due to
symmetry between each of the transverse XI directions.
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A.5 Canonical Commutation Relations and Normalised Basis

This appendix aims to fix the normalization constant Aω, thereby completely determining the general
solution for the transverse equations of motion (Eq.(4.91)) discussed in subsection (4.3.2). In order to
determine Aω the theory is quantized: the scalar field X(t, σ) and its canonically conjugate momentum
P t(t, σ) are promoted to operators (Eqs.(4.92, 4.93) respectively), and suitable commutation relations are
imposed

[
X̂(t, σ), nt P̂

t(t, σ′)
]

Σ
= i δ(σ, σ′) = i

δ(σ − σ′)√
g̃|Σ

,

[
X̂(t, σ), X̂(t, σ′)

]
Σ

=
[
nt P̂

t(t, σ), nt P̂
t(t, σ′)

]
Σ

= 0 ,

(A.51)

where Σ is a Cauchy hypersurface in the xµ = (t, r)µ part of spacetime that is chosen to be a constant time
surface133, g̃ is the induced metric on Σ, and nµ is the future pointing normal to Σ (where nµ = δµt/

√
−g̃tt).

The commutation relations described in Eq.(A.51) are known as equal time commutation relations – they
encode the expectation that simultaneous measurements at different points on the string do not interfere
with each other [92].

Additionally, canonical creation and annihilation commutation relations on the Fourier coefficient operators
(âω, â†ω) are enforced:

[
âω, â

†
ω′

]
Σ

= 2πδ(ω − ω′) ,[
âω, âω′

]
Σ

=
[
â†ω, â

†
ω′

]
Σ

= 0 .

(A.52)

Consistency between the commutation relations Eq.(A.51) and Eq.(A.52) is required134. To this end, the
commutator bracket

[
X̂(t, σ), nt P̂

t(t, σ′)
]

Σ
is calculated from the definitions Eqs.(4.92, 4.93), and the result

is equated to the relevant right hand side of Eq.(A.51). Specifically,

[
X̂(t, σ), ntP̂

t(t, σ′)
]

Σ
= X̂(t, σ)|Σ ntP̂

t(t, σ′)|Σ − ntP̂
t(t, σ′)|Σ X̂(t, σ)|Σ ,

= − i

2πα′
r2

l2
δtt√
g̃|Σ

∫ ∞
0

dω dω′

(2π)2
ωAω Aω′ ×([

fω(σ)e−iωtâω + f ∗ω (σ)eiωtâ †ω
][
fω(σ′)e−iω

′tâω′ − f ∗ω (σ′)eiω
′tâ †ω′

]
−
[
fω(σ′)e−iω

′tâω′ − f ∗ω (σ′)eiω
′tâ †ω′

][
fω(σ)e−iωtâω + f ∗ω (σ)eiωtâ †ω

])
= − i

2πα′
r2

l2
1√
g̃|Σ

∫ ∞
0

dω dω′

(2π)2
ωAω Aω′ ×(

− fω(σ)f ∗ω (σ′) ei(ω
′−ω)t âωâ

†
ω′ + f ∗ω (σ)fω(σ′) ei(ω−ω

′)t â †ωâω′

− fω(σ′)f ∗ω (σ) ei(ω−ω
′)t âω′ â

†
ω + f ∗ω (σ′)fω(σ) ei(ω

′−ω)t â †ω′ âω

)
= − i

2πα′
r2

l2
1√
g̃|Σ

∫ ∞
0

dω dω′

2π
ω Aω Aω′ ×(

− fω(σ)f ∗ω (σ′) ei(ω
′−ω)t δ(ω − ω′)− fω(σ′)f ∗ω (σ) ei(ω−ω

′)t δ(ω′ − ω)
)
,

(A.53)

133Giving initial conditions on this hypersurface determines the future (and past) evolution uniquely.
134In order to ensure consistent quantization of the theory.
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where the third line follows because the cross terms (âωâω′ − âω′ âω) and (â†ωâ
†
ω′ − â

†
ω′ â
†
ω) vanish (using the

second commutation relation in Eq.(A.52)); and the fourth line follows from using the first commutation
relation in Eq.(A.52). Collecting terms, and converting to (t, r∗) coordinates using Eq.(4.52), yields

∴
[
X̂(t, σ), ntP̂

t(t, σ′)
]

Σ
= − i

2πα′
r2

l2
1√
g̃|Σ

∫ ∞
0

dω

2π
ωA2

ω (−fω(σ)f ∗ω (σ′)− fω(σ′)f ∗ω (σ))

=
i

2πα′
r2
H

l2
coth2

(
rH(rs∗ + σ′)

l2

)
1√
g̃|Σ

∫ ∞
0

dω

2π
ω A2

ω (fω(σ)f ∗ω (σ′) + fω(σ′)f ∗ω (σ)) .

(A.54)

Inputting Eqs.(4.83, 4.85, 4.90), the commutator becomes135

[
X̂(t, σ), ntP̂

t(t, σ′)
]

Σ
=

1√
g̃|Σ

i

πα′
r2
H

l2

∫ ∞
0

dω

2π
ωA2

ω

(
e−i(σ+σ′)ω+ei(σ−σ

′)ω+ei(σ+σ′)ω+ei(σ
′−σ)ω

)
, (A.55)

where the near-horizon limit (r → rH ≡ rs∗ → −∞ ≡ r̃0 → 1) has been taken after multiplication136.
Note that in the near-horizon limit,

coth2

(
rH (rs∗ + σ)

l2

)
→ 1, as rs∗ → −∞ . (A.56)

The commutator Eq.(A.55) can be further simplified

[
X̂(t, σ), ntP̂

t(t, σ′)
]

Σ

=
1√
g̃|Σ

i

πα′
r2
H

l2

(∫ ∞
0

dω

2π
ωA2

ω

[
e−i(σ+σ′)ω + e−i(σ−σ

′)ω
]

+

∫ ∞
0

dω

2π
ωA2

ω

[
ei(σ+σ′)ω + ei(σ−σ

′)ω
])

=
1√
g̃|Σ

i

πα′
r2
H

l2

(
−
∫ 0

∞

dω

2π
ωA2

ω

[
e−i(σ+σ′)ω + e−i(σ−σ

′)ω
]

+

∫ ∞
0

dω

2π
ωA2

ω

[
ei(σ+σ′)ω + ei(σ−σ

′)ω
])

=
1√
g̃|Σ

i

πα′
r2
H

l2

(
−
∫ 0

−∞

(−dω)

2π
(−ω)(−A2

ω)
[
ei(σ+σ′)ω + ei(σ−σ

′)ω
]

+

∫ ∞
0

dω

2π
ωA2

ω

[
ei(σ+σ′)ω + ei(σ−σ

′)ω
])

=
1√
g̃|Σ

i

πα′
r2
H

l2

∫ ∞
−∞

dω

2π
ωA2

ω

[
ei(σ+σ′)ω + ei(σ−σ

′)ω
]
.

(A.57)

In order for Eq.(A.57) to be consistent with the definition of the commutation relation Eq.(A.51), the
normalization constant needs to be defined as

Aω :=
l

rH

√
πα′

ω
=

β

2
√
πω λ1/4

, (A.58)

135Mathematica is used to be spared from the tedious multiplication (see Mathematica Notebook [b]: BrownianMotion.nb).
136If the commutation relations hold in the near-horizon limit (i.e. for a specific value of (t, σ)) then they hold ∀ (t, σ). In [42] de

Boer et al. determine the normalization constant A by demanding the normalization of the modes through the Klein-Gordon
inner product. The near-horizon limit is taken during this calculation. In a later work [46], Appendix A, a similar collaboration
Atmaja et al. argue that the inner product contribution from the near-horizon region can be thought of as the overall inner
product. There is a contribution to the inner product from regions away from the horizon; however, the near-horizon region is
semi-infinite in the tortoise coordinate r∗ (r → rH ≡ rs∗ → −∞); and as such the normalization can be completely fixed by
the near-horizon regime. Therefore, the near-horizon limit can be taken here without concern.
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where the second equality follows from using the definition of the AdS radius of curvature l (Eq.(4.64)), and
the relation l = βr2

H/2π from Eq.(4.35).

To prove that the commutation relations Eq.(A.51) now hold, input the newly defined Aω into Eq.(A.57).
Explicitly,

[
X̂(t, σ), nt P̂

t(t, σ′)
]

Σ
=

1√
g̃|Σ

i

πα′
r2
H

l2

∫ ∞
−∞

dω

2π
ω

(
l2

r2
H

πα′

ω

)[
ei(σ+σ′)ω + ei(σ−σ

′)ω
]

=
i√
g̃|Σ

∫ ∞
−∞

dω

2π
ω
[
ei(σ+σ′)ω + ei(σ−σ

′)ω
]

=
i√
g̃|Σ

[δ(σ + σ′) + δ(σ − σ′)]

=
i√
g̃|Σ

δ(σ − σ′) ,

(A.59)

where the third line follows from the Dirac delta function property δ(y − x) = 1
2π

∫∞
−∞ dk e−ik(y−x); and,

in the final line, the first Dirac delta function has disappeared since σ, σ′ ∈ [0, σf ]. Hence, the scalar field
and conjugate momentum commutation relations (Eq.(A.51)) and the Fourier coefficient creation and an-
nihilation commutation relations (Eq.(A.57)) are consistent; proving that the normalization constant Aω is
correctly given by Eq.(A.58).
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A.6 Leading Order Contributions of the Near-Horizon Tortoise Coordinate

The tortoise coordinate r∗ is defined in Eq.(4.38). In the near-horizon limit (r = (1+ ε̃)rH) the tortoise coor-
dinate can be expanded and truncated around ε̃ = 0, in order to yield the near-horizon tortoise coordinate,
ε̃∗. This coordinate is given – for general d dimensions – by

ε̃∗ :=
l2

r2
H(d− 1)

ln(ε̃) +
(d− 4)l2

2r2
H(d− 1)

ε̃+

(
d2 − 14d+ 36

)
l2

24r2
H(d− 1)

ε̃2 −
(
5d2 − 46d+ 96

)
l2

72r2
H(d− 1)

ε̃3 +O (ε̃)
4

= a0 ln(ε̃) + a1ε̃+ a2ε̃
2 + a3ε̃

3 +O (ε̃)
4
,

(A.60)

where r∗ = rH ε̃∗, and a0, a1, a2, a3 are constants. To leading order, the near-horizon AdSd-Schwarzschild
metric is given by

ds2
d =

r2
H

l2
d ~X2

I −
(d− 1)r2

H ε̃

l2
dt2 +

l2

(d− 1)ε̃
dε̃2 , (A.61)

where all terms are O(ε̃). To be consistent, at leading order ε̃∗ must be considered to O(ε̃) – hence, it has
the form ε̃∗ = a0 ln(ε̃) + a1ε̃+O (ε̃)

2.

The near-horizon tortoise coordinate is used to convert the near-horizon metric into (t, ε̃∗) coordinates,
thereby arriving at a conformally flat description of near-horizon AdSd-Schwarzschild, from which the leading
order string solution and the transverse equations of motion can be found. Considering Eq.(5.109) it is clear
that the metric conversion factor between (t, ε̃) and (t, ε̃∗) coordinates is

e
r2H (d−1)ε̃∗

l2 = e
r2H (d−1)

l2
(a0 ln(ε̃)+a1 ε̃+O(ε̃)2)

= ec a0 ln(ε̃) ec a1ε̃ eO(ε̃)2

= ε̃c a0
(

1 + c a1ε̃+O (ε̃)
2
)(

1 +O (ε̃)
2
)

= ε̃

(
1 +

(d− 4)

2
ε̃+O (ε̃)

2

)(
1 +O (ε̃)

2
)

= ε̃ + O (ε̃)
2
,

(A.62)

where the relevant leading order form of ε̃∗ is used in the first equality, the constant c = r2
H(d − 1)/l2 is

defined in the second line, and in the third line the terms ec a1ε̃ and eO(ε̃)2 are series expanded around ε̃ = 0.
While inputting the values for c, a0, and a1 (from Eq.(A.60)) into the fourth line, notice that c a0 = 1 by
construction. All terms of O (ε̃)

2 are disregarded, in order to be consistent with the leading order near-
horizon AdSd-Schwarzschild metric. Hence, from Eq.(A.62), the inverse near-horizon tortoise coordinate is
given by

ε̃ := e
r2H (d−1)ε̃∗

l2 , (A.63)

at leading order; while the near-horizon tortoise coordinate is given by

ε̃∗ :=
l2

r2
H(d− 1)

ln(ε̃) , (A.64)

at leading order. Claims that Eq.(A.64) is the leading order contribution to the near-horizon tortoise
coordinate have been made in [52]. This is, however, the first time to the author’s knowledge a proof to this
effect (even a heuristic one) has been provided.
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A.7 Accessing the Mathematica Code

The Mathematica code used to generate all the analytic results and plots in this dissertation is provided as
supplementary material.

The code is organised into four comprehensively annotated Mathematica notebooks containing: (a) the
mapping of the heavy and light quark test string solutions between the worldsheet parameter space and
target spacetime (MappingWorldSheetToTarget.nb); (b) calculations pertaining to the analysis of heavy
and light quark test strings undergoing Brownian motion (BrownianMotion.nb); (c) the expansion of
the AdSd-Schwarzschild metric in the near-horizon region for the light quark’s test string configuration
(NearHorizonAdSd.nb); and (d) drag force calculations in AdS/CFT (DragForce.nb).

For readers please always check for the latest versions of the notebooks in the GitHub repository:
https://github.com/AlexesMes/brownian-motion-of-quarks.
This repository holds the work of A. Mes in AdS/CFT Brownian motion and contains additional resources
which would be of interest.
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